Производительность вентилятора для кулера

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Никто из нас не хочет, чтобы ПК вышел из строя из-за перегрева. Именно для того, чтобы подобное не произошло, существуют системы охлаждения. Если вы ищете достойный вентилятор для корпуса, либо же своеобразную «затычку», данный материал вам, несомненно, пригодится.

Все мы с вами прекрасно понимаем, что компьютеры являются крайне сложными в техническом плане устройствами, в которых попросту нет никаких лишних деталей и компонентов. И если же говорить про корпусный вентилятор, то он и вовсе имеет особое значение для любой сборки. Безусловно, сам вентилятор по факту не способен никак повлиять на мощность и производительность вашей системы, но именно благодаря ему ваши компоненты (графический и центральный процессоры вместе с ОЗУ) могут служить большее время.

Без достойного охлаждения ни один ПК не сможет прожить достаточно долгий срок, ведь чем выше температура в вашем ПК, тем более высокий шанс того, что тот или иной компонент может внезапно выйти из строя. Именно этот факт и делает покупку корпусных вентиляторов буквально жизненной необходимостью.

На что нужно обращать внимание при выборе корпусного вентилятора

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Казалось бы, нет ничего проще, нежели купить вентилятор для корпуса, ведь, по сути, это обычный вентилятор. Однако на деле всё обстоит куда сложнее и интереснее, так как и при выборе достойного «вентилятора» вы должны ориентироваться на некоторые основные критерии.

    Размер корпусного вентилятора. Вы должны выбирать «вертушку» исходя из размера вашего корпуса, а точнее, судя по тому, какое место для него предназначено. Обычно стандартный размер (он же является диаметром вентилятора) для ПК равен 120 мм, что является всем привычной нормой. Однако существуют и более крупные и мелкие варианты. Так что дабы не купить вентилятор, который вам не подходит идеально в плане размера, лучше заранее ознакомьтесь с тем, какой именно будет соответствовать вашему корпусу.

4-pin в этом плане ещё лучше, ведь такие корпусные вентиляторы способны сами выстраивать нужную скорость работы, которая будет наиболее оптимальна для системы в конкретный момент. Благодаря такому типу подключения ваша вертушка будет работать максимально тихо, если вы не используете ПК для решения каких-либо сложных задач, что очень здорово.

Вертушка-затычка: DEEPCOOL XFAN 120

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Теперь, когда мы разобрались с теорией, настало время поговорить напрямую о корпусных вентиляторах, достойных вашего внимания и денег. И по традиции давайте начнём с самого доступного варианта — DEEPCOOL XFAN 120. Данная модель, несмотря на свою цену, обладает гидродинамическим подшипником, который всё же «не совсем умело используется» в случае с данным кулером, так как всё равно при максимальной скорости вращения 1 300 об/мин вышеуказанная модель может достигать довольно неприличного для своих цифр уровня шума в 24 дБ.

Диаметр данного вентилятора вполне стандартный для большинства корпусов — 120 мм. Радует то, что есть возможность подключения через 3-pin, благодаря чему хоть и незначительно, но всё же можно отрегулировать скорость. Ну и в конце-концов, если говорить про воздушный поток, то данный показатель составляет 43.56 cfm, что очень даже неплохой показатель для вентилятора со скоростью вращения в 1300 об/мин. Его цена составляет в среднем 270 рублей, и за эти деньги DEEPCOOL XFAN 120 является очень хорошим вариантом для охлаждения средних систем, либо же и вовсе вертушкой-затычкой.

Затычка, но с подсветкой: DEEPCOOL WIND BLADE 120

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Если вы ищете вентилятор для своего корпуса, который будет в плане охлаждения показывать себя на куда более достойном уровне, нежели предыдущая модель, но при этом чей шум будет точно так же довольно низким, то обратите внимание на DEEPCOOL WIND BLADE 120. Его размер, как следует из названия, составляет 120 мм, а максимальное количество оборотов равно такому же значению, что и у предыдущего варианта — 1 300 оборотов в минуту. При этом предельный уровень шума выше всего на 2 Дб и составляет 26 дБ, что очень хорошо. Ну и, конечно, подключение осуществляется за счёт 3-pin через материнскую плату.

«Но чем же тогда данный корпусный вентилятор лучше, нежели упомянутый выше XFAN 120, ведь судя по описанию он примерно такой же?» — спросите вы. Ответ будет простым — разница в существенно возросшем объёме «поглощаемого» воздушного потока, который в данном случае ранен 65.16 cfm. Именно благодаря этому вам стоит немного переплатить и получить вариант, который, во-первых, лучше выглядит, во-вторых, куда лучше охлаждает, и в-третьих, имеет низкий уровень шума. Средняя цена DEEPCOOL WIND BLADE 120, кстати, составляет 360 рублей, в которую входит и встроенная в сам вентилятор подсветка, которая, по правде говоря, понравится далеко не всем.

Доступный «умный» вентилятор: AEROCOOL Frost 12 PWM

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Конечно, далеко не всем нравится, когда вертушки постоянно работают на приблизительно одинаковых скоростях, ведь из-за этого изнашиваются подшипники и повышается уровень шума. Специально для людей, которые не хотят много тратиться, но при этом желают более «умный» вентилятор для охлаждения своего ПК, стоит посоветовать AEROCOOL Frost 12 PWM. Хоть диаметр данного вентилятора составляет 120 мм, отличительной особенностью этого варианта является «динамическая» скорость работы. В зависимости от температуры, данный вентилятор способен самостоятельно выбирать наиболее оптимальную скорость работы от 500 до 1 500 об/мин.

Этот факт очень радует, ведь если вы, например, будете пользоваться лишь условным браузером, то практически не будете слышать никакого шума, в то время как при работе с тяжёлыми программами или играми вентилятор будет работать на полную мощность. Ну и, естественно, то, что в зависимости от интенсивности работы вентилятора, он будет по-разному шуметь — от 18 до 28 дБ (и да, помните что на практике данные цифры всегда немного меньше). Огорчить вас в этой модели может разве что объём воздушного потока, который в зависимости от ситуации может составлять либо 17.3, либо 28.2 cfm.

Конечно, это не очень хорошо, но данный недостаток довольно хорошо компенсирует переменная скорость работы с максимальным значением в 1 500 об/мин., благодаря чему в любом случае охлаждение будет очень хорошим. Подключается AEROCOOL Frost 12 PWM, кстати, при помощи разъёма 4-pin, что не является откровением. Приятным моментом для вас может стать наличие многоцветной (не RGB) подсветки, которая выглядит неплохо. Так что если вы ищете, красивый и тихий вентилятор, который будет самостоятельно адаптироваться к температуре вашей системы и эффективно её охлаждать, то Frost 12 PWM по средней цене в 460 рублей, возможно, станет для вас максимально правильным приобретением.

Справится как с браузером, так и с играми: DEEPCOOL GS120

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Если вы хотите заполучить корпусный вентилятор, который будет обладать всеми преимуществами подключения через 4-pin, то рассмотрите к покупке DEEPCOOL GS120. Размер данного варианта такой же, как и у всех — 120 мм. Установленный подшипник скольжения позволяет обеспечивать низкий уровень шума, что очень важно для многих. И да, уровень шума будет варьироваться от 18 до 32 дБ в зависимости от скорости вращения вентилятора.

Равна же скорость может быть как 900, так и 1 800 об/мин, что крайне позитивно сказывается на общем качестве охлаждения в любых ситуациях. Помимо этого, плюсом можно считать и «потребляемый» воздушный поток, чей показатель с учётом всего остального действительно впечатляет — 61.93 cfm. Ну и последнее, это цена.

Она довольно непостоянна и колеблется в среднем от 550 до 800 рублей. Да, для корпусного вентилятора это многовато, но учитывайте, что он сполна отработает свои деньги, так как действительно великолепно охлаждает, чему способствует как скорость вращения, так и большой объём воздушного потока. Но не стоит рассчитывать на тихую работу — вертушка хоть и не громкая, но и тихой её не назвать.

Читайте также:  РАЗДЕЛ XVI Машины оборудование и механизмы электротехническое оборудование их части звукозаписывающая и з

Безупречен во всём: TITAN TFD-12025H12ZP/KE(RB)

Как следует выбирать вентилятор для корпуса и какие достойны вашего внимания

Все перечисленные выше вентиляторы для корпусов хоть и являлись довольно хорошими, но всё же в случае с каждым из них приходилось идти на определённые компромиссы. И если вы хотите приобрести чуть ли не идеальный вариант, то однозначно вы навряд ли сможете найти что-то лучше, чем TITAN TFD-12025H12ZP/KE(RB). Его диаметр равен 120 мм, подключается к материнской плате через 4-pin, а крутиться вентилятору позволяет качественный подшипник скольжения. Да, во всём этом нет ничего необычного, но удивить здесь призваны все прочие характеристики.

Скорость вращения динамическая — от 210 до 2 100 оборотов в минуту, благодаря чему данная модель способна тихо работать в условиях с минимальной нагрузкой, а также крайне быстро в тех случаях, когда ваши комплектующие действительно нагреваются. Уровень шума в целом соответствует скорости вращения — от 5 до 37 дБ. Да, при 2 100 оборотах в минуту вентилятор будет шуметь довольно сильно, но и охлаждение при этом будет первоклассным.

Ну и в завершение — максимальный объём «поглощаемого» воздушного потока равен 63.59 cfm. Так что в том случае, если вас сильно беспокоят перегревы, то TITAN TFD-12025H12ZP/KE(RB) сумеет вас спасти. Однако да, стоит данное «спасение» не так уже и дёшево — в среднем 1 150 рублей.

Источник

Как выбрать кулер для корпуса ПК

Множество современных корпусов для ПК оснащаются встроенной системой воздушного охлаждения, а в некоторых предусмотрены лишь места для их установки. Перед самостоятельной покупкой и монтажом корпусных кулеров, следует иметь четкое представление, какие характеристики изделий являются ключевыми. Главными критериями правильного выбора являются размер кулера, значение скорости вращения и величины воздушного потока вентилятора, тип штатного разъема для подключения, возможность регулирования оборотов, уровень создаваемого шума, а также тип подшипникового узла, определяющего «срок жизни» охлаждающего устройства.

Вторичными моментами можно считать внешний вид и дизайн, геометрию и количество лопастей крыльчатки, встроенную подсветку, комплектацию изделия и приверженность к определенному бренду, которая сказывается на цене корпусного вентилятора. Как видно из всего вышеперечисленного, выбор кулера для корпуса является не таким простым делом, как может показаться на первый взгляд.

Назначение корпусного кулера

В отличие от кулера CPU, единственной задачей которого является охлаждение неистового жара процессора, вентиляторы, установленные в корпусе ПК, служат для удаления горячего воздуха и пыли из системного блока. Для достижения этих целей в корпусе ставят несколько кулеров на вдув и выдув, создающих циркуляцию воздушного потока, исходящего наружу. Нагнетающие вентиляторы, создающие избыточное давление внутри, обычно ставят в паре с пылевыми фильтрами, которые из-за неизбежных щелей в сопряжении конструкций лишь частично справляются со своими функциями. Источником подсоса пыли в корпус может стать и вытяжной вентилятор, мощность которого выше нагнетающего. А некоторые модели корпусов вообще страдают излишней «дырявостью», что также отрицательно сказывается на их пыленепроницаемости. В результате большинство накопленных пылевых частиц оседает на лопастях крыльчатки и спрессовывается там из-за высоких оборотов вентилятора, становясь причиной появления фонового шума во время работы компьютера.

Циркуляция воздуха в системном блоке предусматривает определенное движение потоков, направленных на вдув и выдув. В современных корпусах с нижним расположением блока питания нагнетающие вентиляторы устанавливаются спереди и снизу, а выдувающие — сзади и сверху.

Такая организация движения воздуха позволяет дополнительно использовать естественную циркуляцию, поднимающую холодные потоки снизу к наиболее нагретому объему в верхней части корпуса.

Источник



Выбор корпусных вентиляторов

Эта работа была прислана на наш «бессрочный» конкурс статей.

От правильного выбора корпусных вентиляторов зависит не только эффективность охлаждения внутренностей корпуса, но и (что часто даже более важно) уровень шума. Особенно большой простор для творчества при самостоятельной врезке вентилятора в корпус или их установке в навороченных корпусах, в которых есть место под 5-6 вентиляторов. Общий принцип их установки достаточно прост (см. мою статью «Вентиляция корпусов — мифы и реальность»). Если есть несколько вентиляторов и нужно с их помощью получить максимальный воздухообмен, они все должны работать в одну сторону (для корпусов типа тауэр, как правило, на выдув), при этом должен быть обеспечен свободный доступ наружного воздуха в корпус (то есть достаточная площадь вентиляционных отверстий, соизмеримая с эффективной площадью вентиляторов). В этой статье я сначала попытаюсь дать краткий FAQ по вентиляторам, затем более подробно опишу методику выбора «с цифрами в руках».

Какие бывают вентиляторы

реклама

В корпусах используются вентиляторы диаметром 80, 92 и 120 мм. Каждый размер имеет несколько модификаций по мощности (и, соответственно, по производительности). Для примера дан ассортимент вентиляторов Evercool.

Модель Диаметр n об/мин Шум Q макс Мощность Ток
8025L 80 2000 23 25 CFM 1 0.08
8025M 80 2500 25 32 CFM 1.3 0.11
8025H 80 3000 27 37 CFM 1.9 0.16
9225L 92 1800 24 30 CFM 1.1 0.07
9225M 92 2200 26 38 CFM 1.8 0.15
9225H 92 2600 28 48 CFM 2.5 0.21
12025L 120 1800 29 71 CFM 3 0.25
12025M 120 2000 30 79 CFM 3.36 0.28
12025H 120 2200 32 85 CFM 4 0.33

Мы видим, что для каждого размера есть три модификации (в порядке увеличения оборотов и мощности) — L, M, H. Наиболее распространенной является серия M — она обеспечивает наилучшее соотношение между производительностью и шумом. Нетрудно догадаться, что первые две-три цифры обозначают диаметр, а следующие две высоту. Кстати, диаметр измеряется как размер стороны «квадрата», реальный диаметр крыльчатки на 5-10 мм меньше.

Выбрав нужный вентилятор из таблицы, перед походом в магазин выпишите потребляемый им ток (или мощность), потому что на ценнике продавцы обычно указывают лишь диаметр, ничего не говоря о производительности. А ток или мощность всегда написаны на наклейке вентилятора, поэтому ошибиться будет трудно (особенно если придется покупать вентилятор другой фирмы, у которой своя система обозначений и своя линейка вентиляторов).

Основной характеристикой вентилятора является производительность (расход воздуха) Q, измеряемая в CFM (кубических футах в минуту). Сведения о ней обычно есть на сайте производителя, а иногда и на самом вентиляторе. Однако это максимальная производительность в режиме «настольного вентилятора», при установке в корпус она упадет. Также вентилятор характеризуется создаваемым напором (давлением), скоростью воздушного потока, шумом, потребляемой мощностью, особенностями конструкции и некоторыми другими менее значимыми деталями. Из этих характеристик обычно указывают шум (правда, в каких-то «китайских децибелах», при реальных измерениях он обычно оказывается намного больше), иногда указывают напор, а скорость потока легко вычислить, разделив производительность на эффективную площадь.

Краткий FAQ для тех, кому лень дочитать статью до конца

Тут я дам тезисы и рекомендации общего характера. Некоторые следуют из анализа таблицы характеристик, обоснование остальным будет в конце статьи.

  1. Чем больше напор вентилятора, тем меньше падает его производительность при установке в корпус.
  2. Максимальная производительность и напор прямо пропорциональны оборотам.
  3. Обороты прямо пропорциональны напряжению.
  4. При одинаковой максимальной производительности — напор, скорость потока и мощность будут меньше, а КПД больше:
    • у вентилятора большего диаметра по сравнению с более быстроходным меньшего диаметра;
    • у нескольких параллельно включенных вентиляторов на пониженных оборотах по сравнению с одним таким же на повышенных;
    • у одного вентилятора большого диаметра по сравнению с несколькими параллельно включенными меньшего диаметра;
    • у осевого вентилятора по сравнению с центробежным (бловером).
  5. При равной максимальной производительности:
    • вентилятор большего диаметра заметно тише, чем быстроходный вентилятор меньшего диаметра;
    • два параллельно включенных вентилятора на пониженных оборотах намного тише, чем один такой же на повышенных оборотах;
    • два параллельно включенных вентилятора могут быть как тише, так и громче, чем один большего диаметра.
Читайте также:  Достоинства и недостатки безлопастных вентиляторов

Расчет вентиляции корпуса

Сначала рассчитываем необходимый объем воздуха, который нужно прокачать через корпус. Исходной формулой служит уравнение теплового баланса при условии, что теплопередачей через стенки пренебрегаем:

реклама

N=Q*C*P*(Tвнутр-Tнар) , где

N -мощность системы (если вентилятор БП работает на вдув, сюда надо прибавить порядка 50Вт тепловыделения в нем); Q — расход; C — теплоемкость воздуха; P — плотность воздуха; T — температура (внутренняя и наружная соответственно).

Отсюда после подстановки значений С, P и перевода Q из кубометров в секунду в CFM получаем формулу для практического использования:

Q=1,8N/(Твнутр-Тнар)

Эта формула приближенная, поскольку теплоемкость и плотность воздуха зависят от давления и температуры, а они нам точно неизвестны.

Мощность системы получают либо суммированием мощности компонентов, либо просто оценкой. Для средней современной системы эта мощность будет 150-200 Вт, для «навороченной» и разогнанной — порядка 250 Вт. Основной «печкой» является процессор, данные по его мощности можно найти на сайтах производителей или в многочисленных обзорных статьях. При разгоне с поднятием напряжения считаем, что мощность пропорциональна квадрату напряжения (например, при увеличении напряжения с 1,6 до 1,75В мощность увеличится на 20% при той же частоте).

Надо иметь в виду, что в формулу входит «средняя температура по больнице», то есть температура при условии идеального перемешивания воздуха по всему объему. На самом деле такого не бывает, в зависимости от направления потоков и тепловыделения конкретных устройств где-то температура будет выше, а где-то ниже средней. Причем локальное повышение температуры будет как раз вблизи самых горячих элементов, ради которых мы, собственно, эту вентиляцию и затеяли. Поэтому весьма эффективно применение воздуховодов, соединяющих вход кулера (например, процессорного) непосредственно с внешней средой либо его выход с вытяжным вентилятором. В первом случае температура процессора не будет зависеть от температуры в корпусе, во втором температура в корпусе не будет зависеть от тепловыделения процессора.

Рабочая характеристика вентилятора

Рабочая (расходная, напорная) характеристика вентилятора — это зависимость расхода от напора. Чем больше напор (противодавление в корпусе или местные потери, например в воздуховоде), тем меньше будет расход. Много таких характеристик есть, например, на сайте www.evercool.com (поэтому я и взял для примера вентиляторы именно этой фирмы). Подобную характеристику можно построить и для корпуса, только там все наоборот — чем больше давление, тем больше будет расход через вентиляционные отверстия. Наложив одну характеристику на другую, в точке их пересечения получаем рабочую точку вентилятора, показывающую реальный расход при установке вентилятора в данный корпус.

На этом рисунке представлены характеристики 120-мм вентиляторов, также для сравнения дана характеристика самого мощного из 92-мм вентиляторов (кстати, по шуму он примерно равен самому слабому из 120-мм агрегатов). Зеленым цветом показаны расчетные характеристики корпусов: светлая — характеристика «среднего» корпуса без переделок (но с заглушенным отверстием под дополнительный вентилятор на задней стенке, если он там не установлен), темная — характеристика этого корпуса с увеличенной вдвое площадью вентиляционных отверстий (как этого добиться, см. статью «Вентиляция корпусов — мифы и реальность»).

Допустим, корпус охлаждается только одним вентилятором БП, и нужно выбрать, какой вентилятор для этого лучше подходит (это вполне жизненная задача для владельцев десктопов и тауэров с боковым расположением БП). Мы видим, что максимальная производительность у 120-мм вентиляторов высокая, но она быстро падает с ростом напора, и в определенный момент вперед вырывается 92-мм вентилятор. В стандартном корпусе он лишь чуть-чуть уступает самому мощному из 120-мм (точки 1 и 2), заметно опережая два других (точки 3,4). По сравнению с равношумным 12025L 92-мм вентилятор обеспечивает на четверть большую производительность (27 CFM против 22 CFM), а по сравнению с близким по производительности 12025H «малыш» на 4 дБА (в полтора раза) тише. Очевидно, что в данном случае 92-мм вентилятор выглядит предпочтительнее, чем любой из 120-мм.

Теперь откроем слоты или увеличим площадь вентиляционных отверстий каким-нибудь другим способом (характеристикой корпуса станет темно-зеленая кривая). Видно, что эта мера для самого слабого 120-мм вентилятора эффективнее (точки 3->5), чем его замена на самый сильный без изменений корпуса (точки 3->2). Несмотря на заметную прибавку (около 60%), производительность 120-мм вентиляторов все равно остается вдвое меньше максимальной, в то время как у их 92-мм коллеги она почти достигла пика (замечу, что и в этом случае он остается производительнее «младших» 120-мм). Теперь уже реально обеспечить расход в 40-45 CFM, чего вполне достаточно для хорошего охлаждения умеренно разогнанной системы. Таким образом, и в этом случае 92-мм «карлсон» остается оптимальным выбором по соотношению производительность/шум, не говоря уже о цене. Использование 120-мм вентилятора оправдано только в том случае, если еще больше увеличить площадь вентиляционных отверстий (например, открыванием свободного 5-дюймового отсека, пунктирная линия на графике).

Параллельное и последовательное включение вентиляторов

При параллельном включении вентиляторов (то есть когда они все работают в одну сторону) их расходы складываются. При последовательном включении (когда один работает на вдув, другой на выдув или они установлены друг за другом, например в некоторых БП) складываются их напоры. Для иллюстрации на рис.3 показаны характеристики вентилятора 9225M (красная линия), двух таких же вентиляторов при последовательном (синяя линия) и параллельном (коричневая линия) включении.

реклама

Сформулируем еще одну типовую задачу. Есть стандартный корпус с двумя отверстиями под дополнительные вентиляторы: одно на задней стенке (на выдув), второе на передней (на вдув). В БП установлен вентилятор 9225М, необходимо установкой еще одного такого же обеспечить наибольшее снижение температуры в корпусе.

Сначала найдем расход в исходном корпусе, он равен 24 CFM (точка 1). Добавление переднего (точка 5) вентилятора прибавляет 5 CFM, а заднего (точка 4) 4 CFM. То есть передний вентилятор (редкий случай!) оказывается даже эффективнее заднего, но абсолютная прибавка все равно мизерна. Кстати, если передний вентилятор закрыт развитой декоративной решеткой (что скорее правило, чем исключение), из-за потерь напора в ней он скорее всего уступит заднему.

Теперь откроем слоты в корпусе. Без дополнительного вентилятора прибавка будет 11 CFM (это вдвое больше, чем при установке второго вентилятора в исходный корпус, точка 2), установка переднего вентилятора практически ничего не дает (точка 3), а установка заднего (точка 6) прибавит 22 CFM к исходному. Последний вариант дает самую большую прибавку, фактически удваивая исходный расход. Такая конфигурация оказывается чуть эффективнее и тише на 3 дБА, чем установка самого мощного 120-мм вентилятора «в гордом одиночестве». Возможности для дальнейшего улучшения вентиляции надо искать, как и в первом примере, на пути увеличения площади вентиляционных отверстий.

В заключение посмотрим, что дает любимое развлечение «самоделкиных» — врезка 120-мм вентилятора на вдув в боковую стенку. С точки зрения вентиляции это мероприятие имеет два последствия. Во-первых, добавляется новый последовательно включенный вентилятор, его характеристика (в сумме с имеющейся парой 9225М на выдув) показана на рис.3 коричневой штриховой линией. Во-вторых, в корпусе появляется новая дыра изрядного размера, и теперь корпус уже описывается на том же рисунке штриховой зеленой линией. На их пересечении (точка 10) находим расход- 75 CFM. Подставив это значение в формулу, получим падение температуры — 4-5 градусов. А если этот вентилятор выключить? Тогда мы перемещаемся в точку 9, расход падает на 10%, а температура в корпусе вырастет (о ужас!) аж на полградуса. Иными словами, эффект от дыры тут намного больше, чем от стоящего в ней вентилятора. Правда, вентилятор обычно дует на процессор, снабжая его свежим воздухом, поэтому повышение температуры процессора при выключении вентилятора будет более заметным. Однако для этой цели вполне хватит и самого слабого из 120-мм вентиляторов (особенно если снабдить его хотя бы коротким воздуховодом), свои уши тоже надо поберечь.

Читайте также:  Kiturami Twin Alpha 20 в Москве 80 товаров

Источник

Выбор подходящего кулера для системы охлаждения

В течение многих лет кулеры оставались идеальным инструментом для поддержания требуемого температурного режима, обеспечивая эффективное охлаждение компонентов, выделяющих тепловую мощность от нескольких ватт до нескольких сотен ватт. Оптимальный кулер должен создавать воздушный поток, способный обеспечить требуемый уровень охлаждения системы. В настоящей статье рассматриваются особенности выбора оптимального кулера, включая расчет параметров воздушного потока и давления воздуха, предлагается алгоритм выбора кулера в соответствии с требованиями, предъявляемыми к воздушному потоку, выполняется анализ эффективности параллельной или последовательной работы кулеров, а также рассказывается о влиянии скорости вращения на производительность вентилятора.

Важнейшие параметры воздушного потока

Прежде чем приступать к выбору вентилятора, необходимо определиться с параметрами требуемого воздушного потока. Движущийся воздух эффективно охлаждает объекты. Он поглощает тепло, генерируемое объектами и затем рассеивает его в окружающем пространстве. Количество передаваемой энергии зависит от массы воздушного потока, удельной теплоты воздуха и изменения температуры воздуха в процессе передачи тепла.

Энергия = масса * удельная теплоемкость * повышение температуры

Массу движущегося воздуха можно рассчитать, зная объем воздушного потока и плотность воздуха.

Масса = Объем * Плотность

Подстановка второго уравнения в первое связывает рассеиваемую энергию с потоком воздуха:

Энергия = (Объем * Плотность) * Удельная теплоемкость * Повышение температуры

Разделив обе части уравнения на время, можно получить следующую формулу:

Мощность = (Объем / Время) * Плотность * Удельная теплоемкость * Повышение температуры

В большинстве случаев тепловая энергия, выделяемая системой, известна (рассчитывается из значения КПД), а поток воздуха (объем/ время) оказывается неизвестен. По этой причине последнее уравнение следует переписать следующим образом.

Поток воздуха = мощность/ (плотность * удельная теплоемкость * повышение температуры)

Используя общепринятые обозначения, запишем эту формулу в более привычном виде:

Q = [q/(ρ * Cp * ΔT)] * k

  • Q = воздушный поток
  • q = рассеиваемое тепло
  • ρ = плотность воздуха
  • Cp = удельная теплоемкость воздуха
  • ΔT = повышение температуры воздуха при поглощении рассеиваемого тепла
  • k = константа, зависящая от единиц измерения, используемых в других параметрах

Плотность сухого воздуха на уровне моря при 20 °C составляет 1,20 кг/м 3 (0,075 фунта/фут 3 ), а удельная теплоемкость сухого воздуха составляет 1 кДж/кг°C (0,24 БТЕ/фунт°F). Используя эти значения для плотности и удельной теплоемкости, можно упростить исходное уравнение следующим образом:

Qf = поток воздуха в кубических футах в минуту (CFM)

Qm = поток воздуха в кубических метрах в минуту (CMM)

q = рассеиваемое тепло (Вт) тепло

ΔTF = повышение температуры воздуха при поглощении рассеиваемого тепла (°F)

ΔTC = повышение температуры воздуха при поглощении рассеиваемого тепла (°C)

Давление воздуха

Приведенные выше уравнения позволяют рассчитать скорость воздушного потока, который необходимо создать для охлаждения объекта. Кроме того, разработчик должен определить давление, при котором поток воздуха будет нагнетаться вентилятором. Дело в том, что при прохождении внутри системы поток воздуха будет неизбежно сталкиваться с сопротивлением. Для того чтобы обеспечить продувку воздуха через систему и гарантировать охлаждение нагретых объектов, вентилятор должен создавать достаточное давление. Расчет давления воздушного потока является уникальной задачей для каждого конкретного приложения и для ее решения не существует универсальных формул. Многие САПР позволяют рассчитать давление воздуха и характеристики воздушного потока при проектировании. Однако после создания прототипов следует проверить результаты на практике с помощью анемометров и манометров.

Визуальное отображение распределения температуры и воздушного потока (слева). Зависимость давления от воздушного потока (справа)

Рис. 1. Визуальное отображение распределения температуры и воздушного потока (слева). Зависимость давления от воздушного потока (справа)

Обеспечение требуемого воздушного потока и давления

Подводя итог сказанному в предыдущих пунктах, можно еще раз отметить, что для обеспечения требуемого охлаждения вентилятор (или набор из нескольких вентиляторов) должен создавать воздушный поток с определенной скоростью и давлением воздуха. В документации на кулеры производители обычно приводят значение максимальной скорости воздушного потока (при отсутствии сопротивления), значение максимального давления (при нулевом потоке воздуха) и кривую зависимости воздушного потока от давления. Рассмотрим пример системы, которой для нормального охлаждения требуется воздушный поток 10 CFM или более. Допустим, что механическая конструкция системы имеет определенную зависимость давления от потока воздуха, представленную на рис. 2 (оранжевая кривая). На этом рисунке пунктирная линия обозначает минимальный допустимый поток воздуха, необходимый для охлаждения системы (также допустим больший поток воздуха).

Системные требования. Зависимость статического давления от потока воздуха

Рис. 2. Системные требования. Зависимость статического давления от потока воздуха

С учетом предложенной зависимости давления от потока (рис. 2) для проекта был выбран осевой вентилятор CFM-6025V-131-167 от CUI Devices. В документации на этот вентилятор указано максимальное значение потока воздуха 16 CFM (при отсутствии сопротивления), статическое давление 0,1 inH2O (без потока воздуха), а также график зависимости давления от потока воздуха (рис. 3).

График производительности вентилятора CFM-6025V-131-167от CUI Devices

Рис. 3. График производительности вентилятора CFM-6025V-131-167от CUI Devices

На рис. 4 график системных требований (рис. 2) совмещен с графиком производительности выбранного вентилятора (рис. 3).

Системные требования и производительность вентилятора

Рис. 4. Системные требования и производительность вентилятора

На рис. 4 красным кружком выделена рабочая точка, по которой можно определить рабочие значения потока и давления в установившемся режиме. Следует отметить, что потребность системы в воздушном потоке составляла 10 CFM, а вентилятор обеспечивает 11,5 CFM. Для некоторых приложений такого запаса будет вполне достаточно, а для некоторых приложений запас должен быть больше.

Параллельная и последовательная работа нескольких вентиляторов

В общем случае, чем больше и быстрее будет вентилятор, тем выше будет создаваемый им поток воздуха и больше давление. Однако, если один вентилятор не может обеспечить требуемый поток воздуха или давление, то следует использовать два или более вентиляторов, работающих последовательно или параллельно. При параллельной работе вентиляторов возрастает поток воздуха, но максимальное давление остается тем же. При последовательной работе вентиляторов, наоборот, возрастает максимальное давление, а максимальный поток воздуха остается без изменения (рис.5).

 Параллельная и последовательная работа нескольких вентиляторов

Рис. 5. Параллельная и последовательная работа нескольких вентиляторов

Кривая зависимости давления от потока при параллельной работе нескольких вентиляторов может быть легко получена из исходной кривой производительности одного вентилятора. При параллельной работе нескольких вентиляторов скорость потока увеличивается кратно числу кулеров.

При параллельной работе нескольких вентиляторов поток воздуха кратно возрастает

Рис. 6. При параллельной работе нескольких вентиляторов поток воздуха кратно возрастает

Кривая производительности при последовательной работе нескольких вентиляторов может быть получена аналогичным образом, с той лишь разницей, что при последовательной работе увеличивается давление (кратно числу кулеров). В конечном счете, использование нескольких параллельных вентиляторов будет оптимальным выбором для систем, отличающихся низким сопротивлением и требующих высокого воздушного потока. В то время как несколько последовательных вентиляторов обеспечат большую эффективность в системах, отличающихся высоким сопротивлением и, соответственно, требующих высокого давления потока воздуха.

Использование нескольких вентиляторов в системах с высоким и низким сопротивлением воздушному потоку

Рис. 7. Использование нескольких вентиляторов в системах с высоким и низким сопротивлением воздушному потоку

Влияние скорости вращения вентилятора

Скорость вращения вентилятора (об/ мин) может быть фиксированной или задаваться пользователем с помощью дополнительно входа управления. Изменение скорости влияет на поток воздуха, давление воздуха, потребляемую мощность и акустический шум, производимый вентилятором. Эти отношения описываются так называемыми «законами вентиляторов» (Fan Affinity Laws).

Законы вентиляторов (Fan Affinity Laws)

  • Объем воздуха, перемещаемого вентилятором, пропорционален скорости вращения вентилятора.
    • CFM α RPM
      • Например, увеличение 3 x об / мин дает 3 x CFM
      • Давление воздуха α об / мин 2
        • Например, увеличение 3 x об / мин дает 9 x давление
        • Мощность α об / мин 3
          • Например, увеличение 3 x об / мин требует 27-кратногоувеличения мощности
          • Увеличение акустического шума на 10 дБ обычно воспринимается человеческим слухом как удвоение уровня шума.

          Наглядная демонстрация законов аэродинамики вентиляторо

          Рис. 8. Наглядная демонстрация законов аэродинамики вентиляторов

          Заключение

          Для выбора подходящего вентилятора (или вентиляторов) необходимо определить требуемый поток воздуха и его давление. Параллельная или последовательная работа нескольких кулеров может потребоваться в тех случаях, когда производительности одного вентилятора не хватает для охлаждения системы. Компания CUI Devices предлагает богатый выбор осевых вентиляторов с различными характеристиками, что позволяет разработчикам гибко подбирать размер вентилятора с учетом потребляемой мощности, акустического шума и других параметров.

          Источник