Подключение вентилятора через транзистор



Управление вентилятором от датчика температуры

Многие электроприборы рассеивают некоторую мощность в виде тепла и никуда от этого не денешься. Если выделяемое тепло плохо выводится из корпуса устройства, это неизбежно приведет к сбоям в работе или даже выходу из строя вашего гаджета. Поэтому, по мере возможности, для более эффективного охлаждения добавляют вентиляторы.

управление вентилятором от датчика температуры

Теперь вопрос: зачем крутить вентилятор в те моменты, когда тепло не выделяется, т.е. устройство работает без нагрузки? Лишний шум обычно напрягает. Для контроля температуры в месте нагрева следует установить датчик. И пусть это слово вам не кажется чем-то непостижимым, чем-то сложным. В качестве датчика будем использовать терморезисторы. Что это такое? Это обычные резисторы, но их сопротивление изменяется под действие температуры. Сопротивление может либо увеличиваться при нагреве, либо уменьшаться.

Давайте посмотрим как использовать такое свойство терморезисторов. Признаюсь честно, впервые идею я нашел на YouTube канале Виктора Сочи. Идея простая, легко реализуется, не требует больших затрат ни денег, ни времени.

Чтобы не быть голословным рассмотрим элементы, которые нам понадобятся.

Во-первых, сам терморезистор. На алиэкспрессе продают по 10шт. Цена чуть больше доллара. Есть и по 20шт. — тогда меньше доллара. Нас будут интересовать NTC-термисторы. У таких термисторов падение сопротивления происходит при увеличении температуры. Существуют еще PTC-термисторы или позисторы. У них, наоборот, растет температура — растет сопротивление.

датчики температуры. Термисторы.

термисторы

Следующий элемент, пожалуй, самый важный — модуль понижающий напряжение. Удобнее всего использовать модуль показанный на рисунке. Модуль просто крошечный (2х1см) и имеет высокий КПД. Продают по 5шт. за 3 доллара. Лишние не пропадут, пригодятся для других целей.

Модуль для управления вентилятором

Ну, и сам вентилятор. Размер может быть любой, в зависимости от места установки. Да и напряжение питание любое, обычно 12 или 5 вольт. Правда, следует заметить, если вентилятор на 12 вольт, то на входе понижающего модуля должно быть как минимум 13 вольт, для 5 вольтового соответственно 6 вольт. Недорогие вентиляторы размером 40х40мм можно посмотреть здесь — на 5 В и на 12 В.

вентилятор 5-12 вольт

Теперь посмотрим как соединить, отдельные компоненты, чтобы они стали одним целым. Посмотрите на рисунок ниже. Вентилятор припаиваем к выходным контактам модуля соблюдая полярность. Земля или GRN у нас общая для входящего и выходного напряжения. Модуль позволяет подавать на вход до 24 вольт максимум, ну, а минимум, как я уже говорил, зависит от напряжения питания вентилятора. И разумеется модуль не работает с переменным напряжением, только с постоянным. Датчик припаиваем как показано на схеме.

схема управления вентилятором от датчика температуры с использованием модуля dc-dc

Начальная скорость вентилятора подбирается с помощью подстроечного резистора, расположенного с обратной стороны модуля. Собственно параллельно ему мы и припаиваем датчик. Для 5 вольтового вентилятора лучше использовать термистор на 50 Ком, для 12 вольтового — 100Ком.

Небольшое замечание: Если в одном устройстве требуется контролировать температуру нескольких модулей, соедините датчики параллельно и разметите их в нужных местах. Но помните о правиле параллельного соединения резисторов. И еще одно полезное замечание — ножки датчиков не изолированы (нет лакового покрытия). Для изоляции используйте, например, термоусадку. Если ножки датчиков случайно замкнуть толку от них не будет.

Источник

Автоматический регулятор оборотов кулера

Вентиляторы охлаждения сейчас стоят во многих бытовых приборах, будь то компьютеры, музыкальные центры, домашние кинотеатры. Они хорошо, справляются со своей задачей, охлаждают нагревающиеся элементы, однако издают при этом истошный, и весьма раздражающий шум. Особенно это критично в музыкальных центрах и домашних кинотеатрах, ведь шум вентилятора может помешать наслаждаться любимой музыкой. Производители часто экономят и подключают охлаждающие вентиляторы напрямую к питанию, от чего они вращаются всегда с максимальными оборотами, независимо от того, требуется охлаждение в данный момент, или нет. Решить эту проблему можно достаточно просто – встроить свой собственный автоматический регулятор оборотов кулера. Он будет следить за температурой радиатора и только при необходимости включать охлаждение, а если температура продолжит повышаться, регулятор увеличит обороты кулера вплоть до максимума. Кроме уменьшения шума такое устройство значительно увеличит срок службы самого вентилятора. Использовать его также можно, например, при создании самодельных мощных усилителей, блоков питания или других электронных устройств.

Схема

Схема крайне проста, содержит всего два транзистора, пару резисторов и термистор, но, тем не менее, замечательно работает. М1 на схеме – вентилятор, обороты которого будут регулироваться. Схема предназначена на использование стандартных кулеров на напряжение 12 вольт. VT1 – маломощный n-p-n транзистор, например, КТ3102Б, BC547B, КТ315Б. Здесь желательно использовать транзисторы с коэффициентом усиления 300 и больше. VT2 – мощный n-p-n транзистор, именно он коммутирует вентилятор. Можно применить недорогие отечественные КТ819, КТ829, опять же желательно выбрать транзистор с большим коэффициентом усиления. R1 – терморезистор (также его называют термистором), ключевое звено схемы. Он меняет своё сопротивление в зависимости от температуры. Сюда подойдёт любой NTС-терморезистор сопротивлением 10-200 кОм, например, отечественный ММТ-4. Номинал подстроечного резистора R2 зависит от выбора термистора, он должен быть в 1,5 – 2 раза больше. Этим резистором задаётся порог срабатывания включения вентилятора.

Источник

Подключение вентилятора через транзистор

Простому блоку питания нужен “умный вентилятор”, который охлаждает радиатор 317-й микросхемы. Причем не «тупой», который крутится постоянно, создавая лишний шум и пожирая лишнюю энергию, а такой, который работает ровно столько, сколько нужно, включаясь тогда, когда нужно. Вентилятор позволяет сэкономить на радиаторе – а стало быть, на размерах корпуса блока питания. В наш век компьютеров, вентилятор подходящих размеров добыть не проблема.

А вот управлять его работой – другой вопрос, с которым я и столкнулся.
Можно соорудить схему управления вентилятором на микроконтроллере. Нужен датчик температуры, ШИМ и программа управления. Казалось бы: что может быть проще с точки зрения схемотехники?

Но тут в дело вступает простая экономика. Самый дешевый из распространенных микроконтроллеров, нужный для этих целей – это ATTiny13. Он стоит недорого, но стОит. И где его взять колхознику? Далее: его ШИМ нужно усилить полевиком, который тоже стоит денег на рынке, недоступном для замкадовца… И самое главное: микроконтроллеру на вход, чтоб все было безупречно, надо подключить датчик температуры 1wire типа DS18B20. А он тоже стоит денег. И крепить на радиатор его неудобно. Если все эти «стоит» просуммировать, получится приличная сумма.

И тут я вспомнил о своем «аналоговом» прошлом, и помог мне в этом мой старый товарищ по радиолюбительству. Простой усилитель на составном транзисторе обеспечит мои нужды в управлении мотором вентилятора. Составной транзистор можно собрать из двух биполярных советских транзисторов, коих масса в старой теле- аудиоаппаратуре.

Читайте также:  Примеры применения статей 310 КОСГУ и 340 КОСГУ в 2018 2019 году

А вот где взять аналоговый датчик температуры, да такой, за которым не надо ехать на радиорынок и платить за него деньги? Причем, этот датчик (в отличие от DS18B20 и простых термосопротивлений) должен обеспечивать БЕСПРОБЛЕМНОЕ крепление к радиатору микросхем БП, при этом имея максимальный тепловой контакт с этим самым радиатором. Тут пришлось «покумекать» самому.

Поиски в Интернете привели к использованию в этом качестве советских транзисторов серии КТ81… Эксперименты с ними дали неутешительные результаты. И тут мой взгляд упал на выпаянные из дохлых компьютерных БП сборки диодов Шоттки. Тип, оказавшийся у меня – PHOTRON PSR10C40CT. Я замерил сопротивление двух встречно включенных диодов, и оказалось, что оно крайне зависимо от температуры.

В результате, я построил такую схему:

Вход схемы подключается к выпрямительному мосту БП. В зависимости от настройки, вентилятор может включаться даже при изменении температуры корпуса диодной сборки от комнатной до температуры пальцев человека. Прикрутить такой «датчик» к радитору БП не представляет проблем: сборка имеет отверстие для крепежа под винт М3 и нехилую площадь теплового контакта с радиатором.

Напряжение на входе схемы не должно превышать максимально допустимое напряжение микросхемы-стабилизатора. Настройка сводится к изменению сопротивления подстроечного резистора при выбранной температуре так, чтобы вентилятор начал вращаться. При повышении температуры, частота вращения будет увеличиваться.

Источник

3 лучшие схемы регуляторов скорости вентиляторов

Регулятор скорости вентилятора

Схема регуляторов скорости вращения вентиляторов — необходимые радиоэлементы для сборки, инструкции по монтажу своими руками, видео.

Регулятор скорости вентилятора — простая схема

Предлагаемая ниже схема обеспечивает простую регулировку оборотов вентилятора без контроля оборотов. В устройстве использованы отечественные транзисторы КТ361 и КТ814. Конструктивно плата размещается непосредственно в блоке питания, на одном из радиаторов. Она имеет дополнительные посадочные места для подключения второго датчика (внешнего) и возможность добавить стабилитрон, ограничивающий минимальное напряжение, подаваемое на вентилятор.

Принципиальная схема регулятора

Список необходимых радиоэлементов:

  • 2 биполярных транзистора — КТ361А и КТ814А.
  • Стабилитрон — 1N4736A (6.8В).
  • Диод.
  • Электролитический конденсатор — 10 мкФ.
  • 8 резисторов — 1х300 Ом, 1х1 кОм, 1х560 Ом, 2х68 кОм, 1х2 кОм, 1х1 кОм, 1х1 МОм.
  • Терморезистор — 10 кОм
  • Вентилятор.

Печатная плата

Фото готового регулятора скорости вентилятора:

Внешний вид регулятора скорости вентилятора

Регулятор вентилятора с датчиком температуры

Как известно, вентилятор в блоках питания компьютеров формата AT вращается с неизменной частотой независимо от температуры корпусов высоковольтных транзисторов. Однако блок питания не всегда отдает в нагрузку максимальную мощность. Пик потребляемой мощности приходится на момент включения компьютера, а следующие максимумы — на время интенсивного дискового обмена.

  • Как сделать управляемую плату регулятора на 1,2–35 В

Уменьшить износ вентилятора и снизить общий уровень шума, создаваемого компьютером можно, применив автоматический регулятор частоты вращения вентилятора, схема которого показана на рисунке. Датчиком температуры служат германиевые диоды VD1–VD4, включенные в обратном направлении в цепь базы составного транзистора VT1VT2. Выбор в качестве датчика диодов обусловлен тем, что зависимость обратного тока от температуры имеет более выраженный характер, чем аналогичная зависимость сопротивления терморезисторов. Кроме того, стеклянный корпус указанных диодов позволяет обойтись без каких-либо диэлектрических прокладок при установке на теплоотводе транзисторов блока питания.

Схема регулятора скорости вентилятора с датчиком температуры

Необходимые радиодетали:

  • 2 биполярных транзистора (VT1, VT2) — КТ315Б и КТ815А соответственно.
  • 4 диода (VD1-VD4) — Д9Б.
  • 2 резистора (R1, R2) — 2 кОм и 75 кОм (подбор) соответственно.
  • Вентилятор (M1).

Следует отметить, что число диодов датчика температуры зависит от статического коэффициента передачи тока составного транзистора VT1, VT2. Если при указанном на схеме сопротивлении резистора R2, комнатной температуре и включенном питании крыльчатка вентилятора неподвижна, число диодов следует увеличить.

Необходимо добиться того, чтобы после подачи напряжения питания она уверенно начинала вращаться с небольшой частотой. Естественно, если при четырех диодах датчика частота вращения окажется значительно больше требуемой, число диодов следует уменьшить.

Устройство монтируют в корпусе блока питания. Одноименные выводы диодов VD1-VD4 спаивают вместе, расположив их корпусы в одной плоскости вплотную друг к другу. Полученный блок приклеивают клеем БФ-2 (или любым другим термостойким, например, эпоксидным) к теплоотводу высоковольтных транзисторов с обратной стороны. Транзистор VT2 с припаянными к его выводам резисторами R1, R2 и транзистором VT1 устанавливают выводом эмиттера в отверстие «-cooler» платы блока питания.

Налаживание устройства сводится к подбору резистора R2. Временно заменив его переменным (100–150 кОм), подбирают такое сопротивление введенной части, чтобы при номинальной нагрузке (теплоотводы транзисторов блока питания теплые наощупь) вентилятор вращался с небольшой частотой. Во избежание поражения электрическим током (теплоотводы находятся под высоким напряжением!) «измерять» температуру наощупь можно, только выключив компьютер. При правильно отлаженном устройстве вентилятор должен запускаться не сразу после включения компьютера, а спустя 2–3 мин после прогрева транзисторов блока питания.

Схема регулятора скорости вентилятора для уменьшения шума

В отличии от схемы, которая замедляет обороты вентилятора после старта (для уверенного запуска вентилятора), данная схема позволит увеличить эффективность работы вентилятора путем увеличения оборотов при повышении температуры датчика. Схема также позволяет уменьшить шум вентилятора и продлить его срок службы.

Схема регулятора скорости вентилятора

Необходимые для сборки детали:

  • Биполярный транзистор (VT1) — КТ815А.
  • Электролитический конденсатор (С1) — 200 мкФ/16В.
  • Переменный резистор (R1) — Rt/5.
  • Терморезистор (Rt) — 10–30 кОм.
  • Резистор (R2) — 3–5 кОм (1 Вт).

Если ваш вентилятор иногда не запускается даже при сильном нагреве (паяльник поднести), то нужно добавить цепочку С1, R2. Тогда R1 выставляем так, чтобы вентилятор гарантированно запускался при подаче напряжения на холодный блок питания. Через несколько секунд после заpяда конденсатора, обороты падали, но полностью вентилятор не останавливался. Теперь закрепляем датчик и проверяем, как все это будет крутится пpи реальной работе.

Rt — любой терморезистор с отрицательным ТКЕ, например, ММТ1 номиналом 10–30 кОм. Терморезистор крепится (приклеивается) через тонкую изолирующую прокладку (лучше слюдяную) к радиатору высоковольтных транзисторов (или к одному из них).

Видео о сборке регулятора оборотов вентилятора:

Источник

Управление включением вентилятора для поддержания оптимальной температуры радиатора охлаждения. Часть 2

Схема Рисунок 2 работает следующим образом. При включении питания, когда температура радиатора комнатная, выходное напряжение ОУ (DA2) имеет низкий уровень (потенциал «земли»). В этом случае на затворе транзистора VT1 низкий уровень, отчего транзистор заперт, в связи с чем светодиод не горит, и вентиляторы не работают. При повышении температуры радиатора (от работы усилителя или ИП) и превышении ею верхнего порога выходное напряжение ОУ скачком переключается в высокий уровень (напряжение питания +12 В), отчего транзистор открывается, включая светодиод и вентиляторы. По мере охлаждения радиатора (от обдува вентиляторами) его температура снижается, и когда она пересекает нижний порог, потенциал на выходе ОУ переключается в низкий уровень, отчего транзистор запирается, выключая светодиод и вентиляторы. Далее процесс повторяется.

Читайте также:  Фольксваген поло шумит печка Советы факты видео

Эта схема показала надежную работу, она не содержит труднодоступных комплектующих; их общая стоимость не превышает 100 руб. Кроме того, в связи с простотой схемы её плата легко разводится и имеет размер всего 15×23 мм (см. далее).

Рисунок 5. Принципиальная схема включения вентилятора с помощью ОУ и стабилизатора
с функцией запрета выхода (Vdis).

На Рисунке 5 приведена еще одна (более простая) схема включения вентилятора, но уже без использования полевого транзистора. В схеме применен более современный LDO-стабилизатор с выходным напряжением +12 В – KA278R12 (DA2) и максимальным током 2 А, выпускаемый в полностью изолированном корпусе TO-220F-4L. Отличительная особенность этого стабилизатора – наличие входа запрета Vdis (вывод 4). При подаче на этот вход сигнала низкого уровня («земли») выходное напряжение стабилизатора блокируется, а при подаче высокого уровня (вплоть до входного напряжения), например, +12 В, выходное напряжение становится равным +12 В. Наличие входа Vdis позволяет напрямую подключить к нему выход ОУ, и, таким образом, логика работы схемы (по сравнению со схемой Рисунок 2) остается прежней. Однако для питания самого ОУ и термистора, которые должны работать постоянно, в схеме применен еще один слаботочный LDO-стабилизатор – КР1170ЕН12А (DA3) с максимальным током 100 мА, выпускаемый в трехвыводном корпусе ТО-92 стоимостью не более 20 руб. Микросхема КР1170ЕН-X является аналогом известной микросхемы LM2931-X, однако эта микросхема выпускается только для двух фиксированных напряжений: +3 В и +5 В, тогда как диапазон фиксированных выходных напряжений КР1170ЕН-X более широк и, в частности, содержит в себе напряжение +12 В (а именно – КР1170ЕН12А). В отличие от включения вентиляторов и светодиода с помощью транзистора (Рисунок 2), выходное напряжение стабилизатора DA2 (сигнал +12 F, Рисунок 5) напрямую подается на вывод «+» вентиляторов и анод светодиода (через токоограничивающий резистор R5), a вывод «–» вентиляторов и катод светодиода заземлены. В остальном схема Рисунок 5 аналогична схеме Рисунок 2. Однако в связи с большей простотой схемы её плата имеет меньший размер: 14×21 мм (см. далее). Стоимость комплектующих схемы Рисунок 5 несколько ниже стоимости комплектующих схемы Рисунок 2. Например, стоимость стабилизатора LM2940CT-12 равна стоимости стабилизаторов KA278R12 и КР1170ЕН12А вместе взятых; и это притом, что в схеме Рисунок 5 отсутствует транзистор (а он также стоит денег, хотя и небольших – не более 20 руб.). Схема Рисунок 5 также показала надежную работу.

Разводка плат и их конструкция

Разводка плат сделана автором с помощью программы SprintLayout 6.0. Хотя обе платы разведены с одной стороны и могут быть изготовлены [4] с применением одностороннего фольгированного стеклотекстолита (Рисунки 6а и 7а), если имеется возможность применения двустороннего фольгированного стеклотекстолита, то платы могут иметь дополнительный земляной контур [5] (Рисунки 6б и 7б).

Плата с разводкой Рисунок 6 не имеет крепежных отверстий, поскольку держится на достаточно жестких выводах стабилизатора и полевого транзистора, т.е. на шести ножках (Рисунок 8). Хотя стабилизатор LM2940CT-12 (DA1, Рисунок 2) в корпусе TO-220 позволяет рассеивать мощность до 2 Вт без использования радиатора, автором было установлено, что при работе вентиляторов его корпус заметно нагревается (приблизительно до 40 °C). В связи с этим для его охлаждения автор установил небольшой радиатор – алюминиевую пластину по площади чуть больше площади платы. Пластина имеет два отверстия диаметром 3 мм, с помощью которых она крепится двумя стойками с внешней и внутренней резьбой М3. К внешней части резьбы одной стойки (на шпильку) крепится корпус стабилизатора гайкой М3 (с применением теплопроводной пасты), а ко второй стойке – корпус транзистора, также гайкой – в качестве дополнительного крепежа (транзистор не нагревается, поэтому не требует охлаждения). Обе стойки крепятся к днищу корпуса (усилителя или ИП) винтами М3 с помощью внутренней резьбы (Рисунок 8б).

Плата с разводкой Рисунок 7 также не имеет крепежных отверстий, так как держится на четырех выводах стабилизатора KA278R12. Эти выводы не такие жесткие, как у стабилизатора LM2940CT-12, однако в связи с тем, что их четыре, крепеж на них достаточно прочен. Для упрочнения крепежа на обратной стороне платы (в разводке) установлены дополнительные контактные площадки (Рисунок 7б), а выводы стабилизатора пропаиваются с двух сторон платы. Сам стабилизатор рассеивает без радиатора мощность около 1.5 Вт, поэтому к стабилизатору также прикручена алюминиевая пластина, по площади примерно равная площади платы. Вся конструкция крепится с помощью всего одной стойки с внутренней и внешней резьбой М3 (Рисунок 9). На гайку, которой прикручен стабилизатор к радиатору (с использованием теплопроводной пасты), приклеен «Секундным» клеем кусочек стеклотекстолита толщиной 0.5 мм (на Рисунке 9б хорошо заметен его край коричневого цвета) во избежание случайного контакта гайки с выводами компонентов.

О термисторах

Автором были приобретены три типа термисторов с номинальным сопротивлением 100 кОм: с радиальными выводами – MF52A диаметром 2 мм (Рисунок 10а) и MF11 диаметром 6.5 мм (Рисунок 10б) и с аксиальными выводами – MF58 диаметром чуть менее 2 мм (Рисунок 10в). Стоимость термисторов не превышает 20 руб. Измерение сопротивления термисторов при комнатной температуре показало, что наиболее близки к номиналу термисторы MF52A (100.4 кОм), а вот MF11 (90.4 кОм) и MF58 (89.5 кОм) несколько отличаются от номинала. Термистор MF58, на взгляд автора, неудобен для крепежа, поэтому он был исключен из дальнейшего рассмотрения. К термисторам были припаяны провода МГТФ-0.1; на место пайки одеты ПВХ-трубки (кембрики), а для того чтобы при градуировке в воде (см. далее) сопротивление воды не оказывало влияние на показания, место контакта кембриков с корпусами термисторов и проводами для герметизации было покрыто цапонлаком (зеленого цвета). В процессе градуировки было выявлено, что термистор MF11 в несколько раз более инерционен (из-за его более габаритного корпуса), чем термистор MF52. Так, при удалении из горячей воды (см. далее) температурой 50 °C на воздух (комнатной температуры) показания MF11 достигали номинала за 6 – 7 секунд, а для термистора MF52A – не более 1 секунды. В связи с этим MF11 был также исключен из рассмотрения. Поэтому автор использовал термистор MF52A. Этот недорогой термистор из всех представленных является наиболее современным.

Внешний вид термисторов: (а) - MF52A, (б) - MF11, (в) - MF58.
Рисунок 10. Внешний вид термисторов: (а) – MF52A, (б) – MF11, (в) – MF58.

Термистор можно либо просто приклеить к обратной стороне (ребрам) радиатора теплопроводящим клеем, например, «Радиал» (Рисунок 11а), либо приклеить и для надежности дополнительно прижать скобой (Рисунок 11б). Автором были использованы оба способа, которые показали надежный тепловой контакт термисторов с радиатором.

Читайте также:  Rombica Flow Handy Fan II отзывы

Градуировка устройств

Для градуировки к платам были подключены: питание +14 В от отдельного ИП, термистор и светодиод (вентиляторы не подключались). Далее в емкость около 200 мл была налита вода температурой чуть выше 50 °C (51 °C – 52 °C), в которую был опущен ртутный термометр с ценой деления 0.5 °C. В процессе остывания воды (со скоростью примерно 1 °C за 1.5 – 2 минуты) её температура понижалась, и как только она достигала чуть более 50 °C, в воду опускался термистор, а подстроечный резистор R1 (Рисунки 2 и 5) настраивался таким образом, чтобы при температуре 50 °C светодиод зажигался, а при более низкой – не горел. Для этого термистор периодически опускался в воду и вытаскивался из нее. После такой настройки термистор оставался в воде, светодиод горел, и по мере остывания воды наблюдались показания термометра. Как только светодиод гас, фиксировалась нижняя граница температуры по термометру.

Градуировка показала следующее. При номиналах сопротивлений R4 = 150 кОм и R2, R3 по 10 кОм (Рисунок 2), то есть, при отношении (R2||R3)/R4 = 1/30 (см. уравнение 1), нижняя граница температуры составила 46 °C, а ее гистерезис составил 50 °C – 46 °C, то есть, 4 °C. При номиналах сопротивлений R4 = 100 кОм и R2, R3 по 10 кОм (Рисунок 5), то есть, при отношении (R2||R3)/R4 = 1/20, нижняя граница температуры составила 44 °C, и гистерезис, соответственно, составил 50 °C – 44 °C, т.е. 6 °C. Вот вопрос – a что лучше: 50 °C – 46 °C или 50 °C – 44 °C? Как ни странно, однозначного ответа на этот вопрос нет. Чем меньше гистерезис, тем чаще включаются и выключаются вентиляторы и наоборот. С другой стороны, если нижняя граница температуры составит, например, 44 °C, то при максимальной мощности, выделяемой ИП или усилителем, радиатор может нагреться так, что вентиляторы смогут охладить его только до температуры, к примеру, 46 °C, а до 44 °C «не дотянут». В этом случае вентиляторы будут постоянно работать, сводя на нет всю логику работы устройства. В конце концов, можно выбрать среднее отношение между 1/20 и 1/30, например, 1/24; в этом случае гистерезис составит 50 °C – 45 °C, т.е. 5 °C. Автор оставляет подобные эксперименты читателю.

Примененные вентиляторы и конструкция устройств обдува радиаторов

Для охлаждения радиаторов ИП и усилителя автор рекомендует использовать современные вентиляторы для охлаждения видеокарт, поскольку они имеют существенно сниженный уровень шума (до 20 дБ) и недороги (не более 100 руб. за штуку). Применять же вентиляторы для охлаждения системного блока компьютера, имеющие повышенный уровень шума (35 – 40 дБ) и высокую цену (до 500 руб. и более), или процессора компьютера, на взгляд автора, нецелесообразно. Размер вентилятора желательно подбирать по размеру (высоте) радиатора.

Высота радиатора для усилителя у автора составила 6 см, а радиатор для ИП имел высоту 5 см. Поэтому автором были выбраны два типа вентиляторов для охлаждения видеокарт: вентилятор ExeGate Mirage 60×10S размером 60×60×10 мм с подшипником скольжения мощностью 1.2 Вт и вентилятор ExeGate Mirage 50×10H размером 50×50×10 мм с гидродинамическим подшипником мощностью 1 Вт. Стоимость вентиляторов – не более 100 руб. /шт.

Фотография конструкций устройств обдува радиаторов усилителя [1] (сверху) и ИП [2] (снизу).
Рисунок 12. Фотография конструкций устройств обдува радиаторов
усилителя [1] (сверху) и ИП [2] (снизу).

Вентиляторы были прикручены винтами М3 с гайками к текстолитовым пластинам толщиной 2 мм, в которых были прорезаны отверстия диаметром, соответствующим максимальному диаметру лопастей. Сами же текстолитовые пластины были прикручены винтами М3 и уголками к крайним боковым ребрам радиаторов (Рисунок 12). Провода вентиляторов были пропущены через отверстия в днищах корпусов.

Результаты

Для того чтобы оценить функционирование устройств автором был проведен достаточно жесткий тест, заключающийся в следующем. На вход усилителя был подан синусоидальный сигнал частотой 1 кГц, а его амплитуда была отрегулирована так, чтобы выходной сигнал с усилителя, подключенный к нагрузке 4 Ом, имел амплитуду 16 В. Действующее значение мощности выходного сигнала, как нетрудно подсчитать, в этом случае составило 32 Вт на канал, а поскольку каналов 2 [1] – 64 Вт. Устройство управления вентилятором с гистерезисом 50 °C – 46 °C было подключено к усилителю, а устройство с гистерезисом 50 °C – 44 °C – к ИП. Через несколько минут после включения вентиляторы обоих устройств начали работать, причем, как и следовало ожидать, частота включения-выключения вентиляторов усилителя (с меньшим гистерезисом) была выше (примерно один раз в 3 минуты), чем частота включения-выключения вентиляторов ИП (1 раз в 5 минут). Время работы вентиляторов усилителя составляло около 2 минут, тогда как время работы вентиляторов ИП – около 4 минут. Здесь необходимо отметить, что мощность синусоидального сигнала более чем в два раза превышает мощность звукового сигнала (точнее – сигнала, воспроизводимого с какого-либо музыкального файла), поскольку действующее значение синусоидального сигнала составляет около 70% его амплитуды (точнее, √2/2), а действующее значение музыкального – только 30% от максимального значения его амплитуды. В связи с этим, для того чтобы музыкальный сигнал нагрел радиатор так же, как и синусоидальный, его максимальная амплитуда должна быть в √2 раз больше амплитуды синусоидального. Другими словами, при амплитуде синусоидального сигнала в 16 В, максимальная амплитуда музыкального сигнала (той же мощности) должна быть 16√2 В (≈22.6 В). При этом мгновенная мощность музыкального сигнала на нагрузке в 4 Ом составит 22.6 2 В/4 Ом ≈128 Вт. Это достаточно высокий показатель, в связи с чем эффективность охлаждения радиаторов вентиляторами налицо, что автора вполне устроило. Разумеется, подобной мощности вряд ли удастся достичь, воспроизведя на этом же усилителе на максимальной громкости даже самый «нагруженный» музыкальный файл, однако при несколько меньшей мощности, но более продолжительном времени работы радиаторы неизбежно могут нагреться до неприемлемой температуры, поэтому принудительное охлаждение радиаторов в этом случае будет своеобразной страховкой (и достаточно эффективной) от перегрева силовых компонентов как самого усилителя, так и ИП.

Заключение

Применение современной элементной базы и несложность схем позволяют конструировать простые миниатюрные устройства, включающие вентиляторы для охлаждения радиаторов силовых элементов мощных усилителей и ИП только при относительно больших выделяемых мощностях, страхуя их от перегрева, тогда как при средних и малых мощностях радиаторы охлаждаются абсолютно бесшумным конвективным способом. По сравнению с аналогичными устройствами промышленного изготовления стоимость комплектующих представленных устройств на порядок меньше, а их шумность при включенных вентиляторах существенно ниже.

Источник