Как посчитать напор вентилятора

Расчет и выбор вентилятора. Физический смысл уравнения Бернулли. Полный напор и его составляющие

Несмотря на это, вентиляторы изготавливаются чаще с небольшими углами ( < 90°) наклона лопастей, так как при этом улучшается обтекаемость, уменьшаются завихрения газа и связанные с ними потери напора, а отсюда увеличивается коэффициент полезного действия.

Действительный напор Нв, создаваемый вентилятором, меньше теоретического по двум причинам: 1) часть напора затрачивается на преодоление сопротивлений внутри вентилятора; 2) не все частицы газа в межлопастном канале движутся по одинаковым траекториям, поэтому параллелограммы скоростей на выходе из колеса для разных струек различны. Так как учесть величину напора расчетным путем не представляется возможным, то зависимость действительного напора вентилятора от производительности Нв = f1(Q), N = f2 (Q) и =f3 (Q) определяют на основании опытных данных, т.е. результатов испытаний.

Характеристика вентилятора.

Графическое изображение указанных зависимостей называется характеристикой вентилятора. Эти характеристики в зависимости от конструкции вентилятора изображаются кривыми различной формы и являются критерием при исследовании работы вентилятора в различных условиях, а также при проектировании вентиляционных установок.

Типичная характеристика центробежного вентилятора при постоянном числе оборотов представлена на рис.3.

Характеристика сети.

Если вентилятор подает газ по какому-либо трубопроводу или каналу, то характеристику Н = f(Q) можно определить и для сети. Сетью называется тот трубопровод или канал, на который работает вентилятор. Известно, что напор Нв, создаваемый вентилятором при работе на сеть, расходуется на преодоление трения, а также на создание динамического (скоростного) напора,

где — коэффициент трения;

l — длина трубопровода, м;

d — диаметр трубопровода, м;

— коэффициент местного сопротивления;

— линейная скорость газа, м/с;

g — ускорение силы тяжести, м/с 2 .

Подставив в это уравнение значение скорости из уравнения расхода , где F — площадь поперечного сечения трубопровода, и обозначая

получим уравнение характеристики сети

Это уравнение выражает зависимость между расходом проходящего по трубопроводу (сети) газа Q и напором Нс, м, необходимым для преодоления всех гидравлических сопротивлений трубопровода (сети) и создания скоростного напора. Коэффициент в уравнении (9) можно принять постоянным для данной сети, т.е. независимым от расхода газа.

Построение на одном графике и в одном масштабе характеристик вентилятора и характеристик сети позволяет определить производительность Q, напор Нв, создаваемый вентилятором при работе на данную сеть, затрачиваемую при этом мощность N и КПД вентилятора . На рис.4 изображен подобный график.

Пересечение характеристики трубопровода с характеристикой вентилятора Нв=f1(Q) дает так называемую «рабочую точку». Эта точка определяет условия совместной работы системы вентилятор-трубопровод (сеть), когда НB = Нc, т.е. когда напор, создаваемый вентилятором, равен напору, теряемому в сети. Если провести через рабочую точку вертикальную линию, то она пересечет также и кривые N = f2(Q) и = f3 (Q) и ось абсцисс Q в точках, определяющих показатели работы вентилятора на данную сеть. Например, для рабочей точки М параметры работы вентилятора следующие: производительность – Q1; напор – Н1; потребляемая мощность – N1;КПД — . Положение рабочей точки дает возможность судить об экономичности использования вентилятора в данных условиях.

2. Практическая часть.

2.1. Расчет вентилятора.

Рассчитаем оптимальный диаметр воздуховода по формуле:

, Q=4000 нм 3 /ч при температуре t=60 o C

Пересчитаем расход при нормальных условиях в расход при нашей температуре:

Источник

Как определить давление вентилятора: способы измерить и рассчитать давление в вентиляционной системе

Алексей Дедюлин

Если комфорту в доме вы уделяете достаточно внимания, то наверное, согласитесь, что качество воздуха должно стоять на одном из первых мест. Свежий воздух полезен для здоровья и мышления. В хорошо пахнущую комнату не стыдно пригласить гостей. Проветривать каждое помещение по десять раз в день — нелегкое занятие, неправда ли?

Многое зависит от выбора вентилятора и в первую очередь его давления. Но до того как определить давление вентилятора, нужно ознакомиться с некоторыми физическими параметрами. Прочитайте о них в нашей статье.

Благодаря нашему материалу вы изучите формулы, узнаете виды давления в вентиляционной системе. Мы привели для вас сведения о полном напоре вентилятора и двух способах, по которым его можно измерить. В итоге вы сможете самостоятельно измерить все параметры.

Давление в вентиляционной системе

Чтобы вентиляция была эффективной, нужно правильно подобрать давление вентилятора. Есть два варианта для самостоятельного измерения напора. Первый способ — прямой, при котором замеряют давление в разных местах. Второй вариант — рассчитать 2 вида давления из 3 и получить по ним неизвестную величину.

Давление (также — напор) бывает статическим, динамическим (скоростным) и полным. По последнему показателю выделяют три категории вентиляторов.

К первой относят приборы с напором < 1 кПа, второй — 1—3 кПа и более, третьей — больше 3—12 кПа и выше. В жилых строениях используют устройства первой и второй категории.

Аэродинамика вентилятора на графике

В технической документации к вентилятору обычно указывают аэродинамические показатели, включая полное и статическое давление при определенной производительности. На практике «заводские» и реальные параметры часто не совпадают, и связано это с конструктивными особенностями вентиляционных систем.

Существуют международные и государственные стандарты, направленные на повышение точности измерений в лабораторных условиях.

В России обычно применяют методы A и C, при которых напор воздуха после вентилятора определяют косвенно, исходя из установленной производительности. В разных методиках в площадь выхода включают или не включают втулку рабочего колеса.

Формулы для расчета напора вентилятора

Напор представляет собой соотношение воздействующих сил и площади, на которую они направлены. В случае с вентканалом речь идет о воздухе и сечении.

Поток в канале распределяется неравномерно и не проходит под прямым углом к поперечному разрезу. Узнать точный напор по одному замеру не удастся, придется искать среднее значение по нескольким точкам. Сделать это нужно и для входа, и для выхода из вентилирующего прибора.

Читайте также:  Съемник крыльчатки вентилятора улитки

Осевой вентилятор

Полное давление вентилятора определяют по формуле Pп = Pп (вых.) – Pп (вх.), где:

  • Pп (вых.) — полное давление на выходе из устройства;
  • Pп (вх.) — полное давление на входе в устройство.

Для статического давления вентилятора формула отличается незначительно.

Ее записывают как Рст = Рст (вых.) – Pп (вх.), где:

  • Рст (вых.) — статическое давление на выходе из устройства;
  • Pп (вх.) — полное давление на входе в устройство.

Статический напор не отображает нужное количество энергии для ее передачи системе, а служит дополнительным параметром, по которому можно узнать полное давление. Последний показатель — основной критерий при выборе вентилятора: как домашнего, так и промышленного. Снижение полного напора отображает потерю энергии в системе.

Статическое давление в самом вентиляционном канале получают из разницы статического давления на входе и выходе из вентиляции: Рст = Pст 0 – Рст 1. Это второстепенный параметр.

График статического давления и расхода

Правильный выбор вентилирующего устройства включает такие нюансы:

  • подсчет расхода воздуха в системе (м³/с);
  • подбор устройства на основе такого расчета;
  • определение скорости на выходе по выбранному вентилятору (м/с);
  • расчет Pп устройства;
  • измерение статического и динамического напора для сравнения с полным.

Для расчета места для замера напора ориентируются на гидравлический диаметр воздуховода. Его определяют формулой: D = 4F / П. F — это площадь сечения трубы, а П — ее периметр. Расстояние для определения места замера на входе и выходе измеряют количеством D.

Как вычислить давление в вентиляции?

Полный напор на входе измеряют в поперечном сечении вентиляционного канала, находящемся на расстоянии двух гидравлических диаметров воздуховода (2D). Перед местом измерения в идеале должен быть прямой фрагмент воздуховода с длиной от 4D и невозмущенным течением.

На практике вышеописанные условия встречаются редко, и тогда перед нужным местом устанавливают хонейкомб, который выпрямляет поток воздуха.

Потом в систему вентиляции вводят приемник полного давления: в несколько точек в сечении по очереди – минимум в 3. По полученным значениям высчитывают средний результат. У вентиляторов со свободным входом Pп входное соответствует давлению окружающей среды, а избыточный напор в таком случае равняется нулю.

Трубка полного давления

Если измерять сильный поток воздуха, то по давлению следует определить скорость, а потом — сопоставить ее с размером сечения. Чем выше скорость на единицу площади и чем больше при этом сама площадь, тем производительнее вентилятор.

Полный напор на выходе — понятие сложное. Выходящий поток имеет неоднородную структуру, которая также зависит от режима работы и типа прибора. Воздух на выходе имеет зоны возвратного движения, что усложняет расчет напора и скорости.

Закономерность для времени появления такого движения установить не удастся. Неоднородность течения достигает 7—10 D, но показатель можно снизить выпрямляющими решетками.

Измерение с трубкой Прандтля

Иногда на выходе из вентилирующего устройства стоит поворотное колено или отрывной диффузор. В таком случае течение будет еще более неоднородным.

Напор тогда измеряют по следующему методу:

  1. За вентилятором выбирают первое сечение и сканируют его зондом. По нескольким точкам измеряют средний полный напор и производительность. Последнюю потом сравнивают с производительностью на входе.
  2. Дальше выбирают дополнительное сечение — на ближайшем прямом участке после выхода из вентилирующего прибора. От начала такого фрагмента отмеряют 4—6 D, а если длина участка меньше, то выбирают сечение в самой отдаленной точке. Затем берут зонд и определяют производительность и средний полный напор.

От среднего полного давления на дополнительном сечении отнимают расчетные потери на отрезке после вентилятора. Получают полное давление на выходе.

Потом сравнивают производительность на входе, а также на первом и дополнительном сечениях на выходе. Правильными следует считать входной показатель и один из выходных — более близкий по значению.

Прямолинейного отрезка нужной длины может и не быть. Тогда выбирают сечение, которое разделяет участок для замера на части с соотношением 3 к 1. Ближе к вентилятору должна быть большая из этих частей. Замеры нельзя производить в диафрагмах, шиберах, отводах и других соединениях с возмущением воздуха.

Напоромер для воздушной среды

В случае с крышными вентиляторами Pп измеряют только на входе, а на выходе определяют статическое. Скоростной поток после вентилирующего устройства теряется почти полностью.

Также рекомендуем прочесть наш материал о выборе труб для вентиляции.

Особенности расчета напора

Измерение давления в воздушной среде усложняется из-за ее быстро меняющихся параметров. Манометры следует покупать электронные с функцией усреднения результатов, получаемых за единицу времени. Если напор резко скачет (пульсирует), пригодятся демпферы, которые сглаживают перепады.

Следует помнить такие закономерности:

  • полное давление — это сумма статического и динамического;
  • полный напор вентилятора должен равняться потерям давления в вентиляционной сети.

Измерить статическое давление на выходе не составит труда. Для этого используют трубку для статического напора: один конец вставляют в дифманометр, а другой направляют в сечение на выходе из вентилятора. По статическому напору вычисляют скорость потока на выходе из вентилирующего прибора.

Динамический напор тоже измеряют дифманометром. К его соединениям подключают трубки Пито — Прандтля. К одному контакту — трубку для полного напора, а к другому — для статического. Полученный результат будет равняться динамическому давлению.

Чтобы узнать потери давления в воздуховоде, можно проконтролировать динамику потока: как только вырастает скорость движения воздуха, повышается сопротивление вентиляционной сети. Напор теряется из-за этого сопротивления.

Термоанемометр для вентиляционной системы

При росте скорости вентилятора статический напор падает, а динамический растет пропорционально квадрату увеличения расхода воздуха. Полное давление не изменится.

С правильно подобранным устройством динамический напор изменяется прямо пропорционально квадрату расхода, а статический — обратно пропорционально. В таком случае количество используемого воздуха и нагрузка электродвигателя если и будут расти, то несущественно.

Читайте также:  Вентилятор напольный WILLMARK WSF 30W 1100мм 450мм 40Вт 3 скорости белый

Некоторые требования к электродвижку:

  • малый пусковой момент — по причине того, что расход мощности меняется в соответствии с изменением количества оборотов, подведенного к кубу;
  • большой запас;
  • работа на максимальной мощности для большей экономии.

Мощность вентилятора зависит от полного напора, а также от КПД и расхода воздуха. Последние два показателя коррелируют с пропускной способностью вентсистемы.

На стадии ее проектирования придется расставить приоритеты. Учесть затраты, потери полезного объема помещений, уровень шума.

Выводы и полезное видео по теме

Обзор физических показателей, которые нужны для измерений:

Роль давления в вентиляционной сети:

Вентилятор — простая конструкция в виде колеса с лопастями. Одновременно это главная часть вентиляционной системы. Механический прибор влияет на напор в воздуховоде и определяет эффективность вентиляции.

Если хотите рассчитать давление вентилятора, разберитесь с такими величинами, как скорость, расход воздуха, мощность. Вы будете лучше понимать суть измерений. Главный показатель, полный напор измеряйте по описанных нами схемах.

Если у вас есть вопросы — задавайте их в форме под статьей. Пишите комментарии и обменивайтесь ценными знаниями с другими читателями. Возможно, у вас есть опыт в проектировании систем вентилирования – он будет полезен в чьей-то конкретной ситуации.

Источник



Расчет потери напора воздуха в системе вентиляции

Табл. № 1. Рекомендованная скорость движения воздуха для различных помещений

Назначение Основное требование
Бесшумность Мин. потери напора
Магистральные каналы Главные каналы Ответвления
Приток Вытяжка Приток Вытяжка
Жилые помещения 3 5 4 3 3
Гостиницы 5 7.5 6.5 6 5
Учреждения 6 8 6.5 6 5
Рестораны 7 9 7 7 6
Магазины 8 9 7 7 6

Исходя из этих значений следует рассчитывать линейные параметры воздуховодов.

Алгоритм расчета потерь напора воздуха

Расчет нужно начинать с составления схемы системы вентиляции с обязательным указанием пространственного расположения воздуховодов, длины каждого участка, вентиляционных решеток, дополнительного оборудования для очистки воздуха, технической арматуры и вентиляторов. Потери определяются вначале по каждой отдельной линии, а потом суммируются. По отдельному технологическому участку потери определяются с помощью формулы P = L×R+Z, где P – потери воздушного давления на расчетном участке, R – потери на погонном метре участка, L – общая длина воздуховодов на участке, Z – потери в дополнительной арматуре системы вентиляции.

Для расчета потерь давления в круглом воздуховоде используется формула Pтр. = (L/d×X) × (Y×V)/2g. X – табличный коэффициент трения воздуха, зависит от материала изготовления воздуховода, L – длина расчетного участка, d – диаметр воздуховода, V – требуемая скорость воздушного потока, Y – плотность воздуха с учетом температуры, g – ускорение падения (свободного). Если система вентиляции имеет квадратные воздуховоды, то для перевода круглых значений в квадратные следует пользоваться таблицей № 2.

Табл. № 2. Эквивалентные диаметры круглых воздуховодов для квадратных

Размеры 150 200 250 300 350 400 450 500
250 210 245 275
300 230 265 300 330
350 245 285 325 355 380
400 260 305 345 370 410 440
450 275 320 365 400 435 465 490
500 290 340 380 425 455 490 520 545
550 300 350 400 440 475 515 545 575
600 310 365 415 460 495 535 565 600
650 320 380 430 475 515 555 590 625
700 390 445 490 535 575 610 645
750 400 455 505 550 590 630 665
800 415 470 520 565 610 650 685
850 480 535 580 625 670 710
900 495 550 600 645 685 725
950 505 560 615 660 705 745
1000 520 575 625 675 720 760
1200 620 680 730 780 830
1400 725 780 835 880
1600 830 885 940
1800 870 935 990

По горизонтали указана высота квадратного воздуховода, а по вертикали ширина. Эквивалентное значение круглого сечения находится на пересечении линий.

Потери давления воздуха в изгибах берутся из таблицы № 3.

Табл. № 3. Потери давления на изгибах

Для определения потерь давления в диффузорах используются данные из таблицы № 4.

Табл. № 4. Потери давления в диффузорах

В таблице № 5 дается общая диаграмма потерь на прямолинейном участке.

Табл. № 5. Диаграмма потерь давления воздуха в прямолинейных воздуховодах

Все отдельные потери на данном участке воздуховода суммируются и корректируются с таблицей № 6. Табл. № 6. Расчет понижения давления потока в системах вентиляции

Во время проектирования и расчетов существующие нормативные акты рекомендуют, чтобы разница в величине потерь давления между отдельными участками не превышала 10%. Вентилятор нужно устанавливать в участке системы вентиляции с наиболее высоким сопротивлением, самые удаленные воздуховоды должны иметь минимальное сопротивление. Если эти условия не выполняются, то необходимо изменять план размещения воздуховодов и дополнительного оборудования с учетом требований положений.

Источник

Определение динамического давления в воздуховоде

Основой проектирования любых инженерных сетей является расчет. Для того чтобы правильно сконструировать сеть приточных или вытяжных воздуховодов, необходимо знать параметры воздушного потока. В частности, требуется рассчитать скорость потока и потери давления в канале для правильного подбора мощности вентилятора.

Схема устройства и принципа работы воздуховода

Схема устройства и принципа работы воздуховода.

В этом расчете немаловажную роль играет такой параметр, как динамическое давление на стенки воздуховода.

Поведение среды внутри воздухопровода

Вентилятор, создающий воздушный поток в приточном или вытяжном воздуховоде, сообщает этому потоку потенциальную энергию. В процессе движения в ограниченном пространстве трубы потенциальная энергия воздуха частично переходит в кинетическую. Этот процесс происходит в результате воздействия потока на стенки канала и называется динамическим давлением.

Формулы для аэродинамического расчета систем естественной вентиляции

Формулы для аэродинамического расчета систем естественной вентиляции.

Кроме него существует и статическое давление, это воздействие молекул воздуха друг на друга в потоке, оно отражает его потенциальную энергию. Кинетическую энергию потока отражает показатель динамического воздействия, именно поэтому данный параметр участвует в расчетах аэродинамики вентиляции.

Читайте также:  Как узнать объем вентилятора

При постоянном расходе воздуха сумма этих двух параметров постоянна и называется полным давлением. Оно может выражаться в абсолютных и относительных единицах. Точкой отсчета для абсолютного давления является полный вакуум, в то время как относительное считается начиная от атмосферного, то есть разница между ними – 1 Атм. Как правило, при расчете всех трубопроводов используется величина относительного (избыточного) воздействия.

Физический смысл параметра

Таблица расчета вентиляции

Таблица расчета вентиляции.

Если рассмотреть прямые отрезки воздуховодов, сечения которых уменьшаются при постоянном расходе воздуха, то будет наблюдаться увеличение скорости потока. При этом динамическое давление в воздуховодах будет расти, а статическое – снижаться, величина полного воздействия останется неизменной. Соответственно, для прохождения потока через такое сужение (конфузор) ему следует изначально сообщить необходимое количество энергии, в противном случае может уменьшиться расход, что недопустимо. Рассчитав величину динамического воздействия, можно узнать количество потерь в этом конфузоре и правильно подобрать мощность вентиляционной установки.

Обратный процесс произойдет в случае увеличения сечения канала при постоянном расходе (диффузор). Скорость и динамическое воздействие начнут уменьшаться, кинетическая энергия потока перейдет в потенциальную. Если напор, развиваемый вентилятором, слишком велик, расход на участке и во всей системе может вырасти.

В зависимости от сложности схемы, вентиляционные системы имеют множество поворотов, тройников, сужений, клапанов и прочих элементов, называемых местными сопротивлениями. Динамическое воздействие в этих элементах возрастает в зависимости от угла атаки потока на внутреннюю стенку трубы. Некоторые детали систем вызывают значительное увеличение этого параметра, например, противопожарные клапаны, в которых на пути потока установлены одна или несколько заслонок. Это создает повышенное сопротивление потоку на участке, которое необходимо учитывать в расчете. Поэтому во всех вышеперечисленных случаях нужно знать величину динамического давления в канале.

Расчеты параметра по формулам

На прямом участке скорость движения воздуха в воздуховоде неизменна, постоянной остается и величина динамического воздействия. Последняя рассчитывается по формуле:

Схема организации воздухообмена при общеобменной вентиляции

Схема организации воздухообмена при общеобменной вентиляции.

  • Рд – динамическое давление в кгс/м2;
  • V – скорость движения воздуха в м/с;
  • γ – удельная масса воздуха на этом участке, кг/м3;
  • g – ускорение силы тяжести, равное 9.81 м/с2.

Получить значение динамического давления можно и в других единицах, в Паскалях. Для этого существует другая разновидность этой формулы:

Здесь ρ – плотность воздуха, кг/м3. Поскольку в вентиляционных системах нет условий для сжатия воздушной среды до такой степени, чтобы изменилась ее плотность, она принимается постоянной – 1.2 кг/м3.

Далее, следует рассмотреть, как участвует величина динамического воздействия в расчете каналов. Смысл этого расчета – определить потери во всей системе приточной либо вытяжной вентиляции для подбора напора вентилятора, его конструкции и мощности двигателя. Расчет потерь происходит в два этапа: сначала определяются потери на трение о стенки канала, потом высчитывается падение мощности воздушного потока в местных сопротивлениях. Параметр динамического давления участвует в расчете на обоих этапах.

Сопротивление трению на 1 м круглого канала рассчитывается по формуле:

  • Рд – динамическое давление в кгс/м2 или Па;
  • λ – коэффициент сопротивления трению;
  • d – диаметр воздуховода в метрах.

Нюансы монтажа воздуховода.

Потери на трение определяются отдельно для каждого участка с различными диаметрами и расходами. Полученное значение R умножают на общую длину каналов расчетного диаметра, прибавляют потери на местных сопротивлениях и получают общее значение для всей системы:

  1. HB (кгс/м2) – общие потери в вентиляционной системе.
  2. R – потери на трение на 1 м канала круглого сечения.
  3. l (м) – длина участка.
  4. Z (кгс/м2) – потери в местных сопротивлениях (отводах, крестовинах, клапанах и так далее).

Определение параметров местных сопротивлений вентиляционной системы

В определении параметра Z также принимает участие величина динамического воздействия. Разница с прямым участком заключается в том, что в разных элементах системы поток меняет свое направление, разветвляется, сходится. При этом среда взаимодействует с внутренними стенками канала не по касательной, а под разными углами. Чтобы это учесть, в расчетную формулу можно ввести тригонометрическую функцию, но тут есть масса сложностей. Например, при прохождении простого отвода 90⁰ воздух поворачивает и нажимает на внутреннюю стенку как минимум под тремя разными углами (зависит от конструкции отвода). В системе воздуховодов присутствует масса более сложных элементов, как рассчитать потери в них? Для этого существует формула:

Для того чтобы упростить процесс расчета, в формулу введен безразмерный коэффициент местного сопротивления. Для каждого элемента вентиляционной системы он разный и является справочной величиной. Значения коэффициентов были получены расчетами либо опытным путем. Многие заводы-производители, выпускающие вентиляционное оборудование, проводят собственные аэродинамические исследования и расчеты изделий. Их результаты, в том числе и коэффициент местного сопротивления элемента (например, противопожарного клапана), вносят в паспорт изделия или размещают в технической документации на своем сайте.

Для упрощения процесса вычисления потерь вентиляционных воздуховодов все значения динамического воздействия для разных скоростей также просчитаны и сведены в таблицы, из которых их можно просто выбирать и вставлять в формулы. В Таблице 1 приведены некоторые значения при самых применяемых на практике скоростях движения воздуха в воздуховодах.

Скорость воздуха, м/с 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Динамическое давление кгс/м 2 0.0152 0.0611 0.1374 0.2444 0.3817 0.5499 0.7483 0.9776 1.237
Скорость воздуха, м/с 5 5.5 6 6.5 7 7.5 8 8.5 9
Динамическое давление кгс/м 2 1.527 1.8486 2.199 2.581 2.9939 3.4373 3.9104 4.4149 4.9491

Из расчетных формул и данной таблицы хорошо видно, что значения не растут пропорционально возрастанию скорости воздуха.

Динамическое воздействие, оказываемое потоком воздуха на стенки воздуховодов, фасонных и прочих элементов, определяет потери давления на участке и является важным параметром, который необходимо учитывать в расчетах.

Источник