Игольчатые и пластинчатые радиаторы



Какой радиатор выбрать для охлаждения полупроводника

Приветствую вас на своем блоге. В этой статье я расскажу о назначении радиаторов, какой радиатор выбрать для охлаждения проводника. Какие бывают радиаторы по назначению. На что нужно обращать внимание, каких размеров он должен быть и каких размеров. Что бы полупроводники не перегревались.

Назначение радиаторов

Назначение радиаторов – отводить тепло от полупроводников, это позволяет снизить влияние температуры на рабочие параметры приборов. Для этого применяют пластинчатые, ребристые, штыревые радиаторы. Чем больше радиатор по размеру, тем лучше он отводит тепло от радиодеталей, и тем самым они меньше нагреваются.

Для улучшения отвода тепла полупроводниковый прибор лучше всего крепить непосредственно к радиатору. Если необходима электрическая изоляция полупроводникового прибора от шасси, радиатор крепят на шасси через изолирующие прокладки.

Черный радиатор

Теплоизолирующая способность радиатора зависит от степени черноты материала, из которого он сделан. Чем больше черноты, тем отвод тепла будет эффективнее. Рассмотрим несколько видов разных радиаторов, что бы понять какой радиатор выбрать для нужного вам полупроводника.

Есть несколько технологий при изготовлении радиаторов из алюминия. Но в основном используют две технологии – литье и экструзия. Выбор производства радиаторов определяется вопросом: цена – качество. Так ребристые радиаторы дешевле делать методом экструзионном способом, а игольчатые методом литья.

Например, радиаторы ребристой формы будут дешевле и эффективней при экструзионном производстве, а произвести игольчатые радиаторы можно только методом литья.

Какой радиатор выбрать

При выборе радиатора нужно обращать внимание на много критериев, это: материал радиатора, площадь его рабочей поверхности, форма охладителя. Всё это значительно влияет на характеристики теплоотвода. Дешевые радиаторы из алюминия охлаждают хуже, чем медные радиаторы и графитовые, но и цена у последних не маленькая.
Материал, из которого изготавливаются радиаторы для транзисторов / светодиодов / микросхем, – это алюминий или медь.

Радиатор большой

Медные – дороже, но у них лучший теплоотвод, потому что медные радиаторы обладают лучшей теплопроводностью. Например, радиатор для процессора, радиатор для видеокарты и радиатор для чипсета – лучше выбирать на основе меди. А вот радиаторы для транзисторов или светодиодов целесообразнее купить на основе алюминия (его сплавы), потому что в данном случае вы получите оптимальное соотношение цена/качество.

Если у вас есть возможность, то покупайте их в интернет магазинах со скидками, или на рынках барахолках. Где цены на много ниже, чем у новых, а качество то же самое.

Штыревой радиатор

Штыревой (игольчатый) радиатор является очень эффективным теплоотводом для полупроводниковых приборов. Они изготавливаются из дюралюминия толщиной 4-6 мм и алюминиевой проволоки диаметром 3-5 мм. На поверхности предварительно обработанной пластины радиатора нужно наметить кернером места для отверстий под штыри, выводы транзисторов, диодов и крепежные винты.

Штыревой радиатор

Расстояние между центрами должно быть равно 2-2.5 диаметрам применяемой алюминиевой проволоки. Диаметр отверстий под штыри выбирают с таким расчетом, что бы проволока входила в них с возможно меньшим зазором. С обратной стороны отверстия под штыри зенкуют на глубину 1-1.5 мм. При минимальном объеме такой радиатор имеет максимальную эффективную площадь рассеивания. Площадь поверхности такого теплоотвода равна сумме площадей каждого штырька и площади основного тела.

Так же можно купить готовые радиаторы как в магазине, так и на рынке. Я покупаю их на рынке – барахолке, там они стоят раз в пять дешевле, чем в магазине. Имеется большой выбор и какой радиатор выбрать для вашей поделки, у вас не будет проблем.

Ребристый радиатор

Ребристый (пластинчатый) радиатор. Площадь этих радиаторов равна сумме площадей всех сторон. Чем больше площадь поверхности, тем выше эффективность теплопередачи. Для улучшения охлаждения элементов нужно увеличивать площадь радиатора. И что бы не увеличивать размеры, так как это не всегда можно из за конструкции устройства, радиаторы делают с ребрами и микролельэфом на них. Количество ребер и их размеры значительно увеличивают площадь радиаторов.

Ребристый радиатор

Так же радиаторы с ребрами отличаются по расстоянию между ребрами. На радиаторах, где расстояние маленькое между ними, нужно ставить принудительное охлаждение. Такие радиаторы встречаются в компьютерах для охлаждения процессоров. Радиаторы с большим расстоянием между ребрами используются без вентиляторов. Хотя и первые так же можно использовать без принудительного охлаждения. Тут уже на сколько эффективно они будут работать с охлаждением и без.

Читайте также:  Снятие радиатора охлаждения Ниссан Х Трейл 2007 2014

Усовершенствованный пластинчатый теплоотвод представляет собой набор из нескольких пластин, загнутых в разные стороны. Этот радиатор при площади поверхности равной простейшему пластинчатому имеет меньшие габариты. Устанавливается такой теплоотвод аналогично пластинчатому. Количество пластин может быть различным – в зависимости от необходимой поверхности. Площадь рассеивания такого радиатора равна сумме площадей всех загнутых участков пластин, плюс площадь поверхности центральной части. Это тип радиатора имеет и недостатки: пониженную эффективность отвода тепла от всех пластин, а также невозможность получения идеально прямой поверхности в местах соединения пластин между собой.

Радиаторы с принудительным охлаждением

Еще есть радиаторы, которые лучше принудительно охлаждать. Такие можно увидеть в компьютерных блоках питания. При небольшой площади такие радиаторы рассеивают большое количество мощности. Их недостатком является шум в работе и износ вентиляторов.

Радиатор с принудительным охлаждением

Делаются они из алюминия и его сплавов. Так же есть медные радиаторы, но их цена намного дороже. Но отводят они тепло намного лучше. И если у вас дорогое оборудование, то что бы избежать перегрева лучше использовать радиаторы из меди.

Как крепить полупроводники к радиатору

Полупроводники крепятся к радиатору при помощи специальных фланцев. При необходимости изоляции радиоэлементов от радиатора нужно применять изоляционные прокладки. Так конечно эффективность снизится, но при использовании разных микросхем и транзисторов это необходимо. Еще вариант изолировать сам радиатор от платы, что бы не применять изоляционные прокладки.

Прокладки для радиатора

Поверхность в месте контакта с радиатором должна быть ровной и чистой, для лучшей отдачи тепла. Так же можно применять специальные термопасты для повышения эффективности и снижения сопротивления теплоотдачи. Если у вас транзисторы в защищенном корпусе, то их можно ставить на радиатор без прокладок. Но про термопасту забывать не стоит.

Как рассчитать радиатор

Рассчитывать радиатор самому можно по специальным формулам. Но я напишу как проще рассчитать размер радиатора. Это было написано в журнале “Радиоэлектроника”. Есть такой параметр как тепловое сопротивление. Он показывает, на сколько градусов нагревается объект, если в нем выделяется мощность в 1 Вт.

Радиатор как расчитать

Например для транзистора в корпусе ТО-5 тепловое сопротивление равно 220 градусов Цельсия на 1 Вт. Если допускать нагрев до 80 градусов, то получим, что на транзисторе должно выделяться не белее чем 36 Вт (80/220=36). Далее будем считать нагрев транзистора или тиристора не более, чем на 80 градусов.

Есть грубая формула для расчета теплового сопротивления теплоотвода:

S – площадь поверхности теплоотвода, выраженная в квадратных сантиметрах.

Отсюда площадь поверхности можно рассчитать по формуле:

S=(50/Q) в квадрате

Например если нам нужен блок питания на 12 вольт 10 ампер. После выпрямителя имеем 17 вольт, значит, падение напряжения на транзисторе будет 5 вольт, а мощность 50 Вт. При допустимом нагреве до 80 градусов, получим тепловое сопротивление.

Тогда по второй формуле мы определим площадь радиатора:

S=1000 см в квадрате

Для грубого расчета 1 ватт тепла, выделяемого полупроводником, нужно использовать площадь теплоотвода, равную 30 кв. см.

На этом все, пишите ваши комментарии, читайте статьи сайта, подписывайтесь на мой Ютуб канал.

Источник

Потек радиатор: что брать взамен?

Когда-то первые вазовские «восьмерки» шокировали практически всех и всем. В том числе своими радиаторами, сделанными… из алюминия!

— Ну, додумались, — качали головами бывалые. — Медный-то запаял и дальше поехал — а с этим что делать? Новый покупать?

С тех пор всё изменилось. Мягкая, тяжелая и дорогая медь полностью уступила место алюминию. А чтобы посмотреть на современное производство радиаторов всех мастей, не нужно ехать за границу — гораздо удобнее посетить Санкт-Петербург. Помимо Медного всадника и Спаса на Крови там есть и завод ПО «Авто-Радиатор», выпускающий более полумиллиона радиаторов Luzar в год.

Трубчатые и пластинчатые

С детства помню, что грибы бывают трубчатые и пластинчатые — к примеру, подберезовики и сыроежки. Примерно такая же терминология применяется и в радиаторном мире. Два основных вида радиаторов систем охлаждения — это сборные трубчато-пластинчатые, а также паяные (несборные) трубчато-ленточные. Какие лучше? Давайте разбираться.

Читайте также:  Цены и характеристики чугунных радиаторов Grotescco

Начнем с подберезо… простите, с трубчато-пластинчатых изделий. Больше всего мне понравилось то, что внутрь трубок при производстве вставляют так называемые турбулизаторы. Это закрученные спиралью узкие и длинные пластмассовые пластины, благодаря которым жидкость не проносится вдоль трубки на всех парáх, а совершает сложное движение по спирали, что способствует лучшему теплообмену. А вообще процесс начинают с вырубания охлаждающих пластин из ленты (отечественной, кстати говоря!). Затем полученные пластины надевают на трубки, после чего применяют — необычный термин! — дорнование.

Дорн — это один из героев Чехова, но тут он точно ни при чем. Так называется стержень, который проталкивают внутрь трубок, увеличивая таким образом их наружный диаметр. Далее на концы трубок устанавливают опорные донья с уже вложенными резиновыми прокладками и концы трубок развальцовывают.

На оба опорных дна монтируют пластмассовые бачки, которые крепят загибанием лапок. Получившиеся радиаторы проверяют избыточным давлением более 2 бар, при этом специальный стенд регистрирует малейшее падение давления. Прошедший испытания радиатор получает индивидуальный номер.

Сборные радиаторы

высокая жесткость трубки защищены от повре­ждений пластинами малый процент брака невысокая стоимость материалов не очень высокая теплоотдача сложная оснастка

Повысить теплоотдачу удается расположением трубок в шахматном порядке. Если применить плоскоовальные трубки (уже без турбулизаторов), теплоотдача тоже увеличится. Кстати, такие трубки также обрабатывают дорном.

А что сказать о паяных радиаторах (кроме того, что они несборные)? Такие конструкции требуют соединять трубки с охлаждающей лентой и основанием бачков в специальной печке! Конструкция спекается в печи в среде азота, который помогает освободить алюминиевые поверхности от окислов. Далее через совсем тонкие (лапшевидные) прокладки устанавливают бачки.

Паяные радиаторы

высокая теплоотдача низкая стоимость оснастки нет необходимости в массивной резиновой прокладке (при пластмассовом бачке) сложный процесс производства (возможен брак при недостаточном соединении трубок с лентами) нет защиты трубок

Сколько ходов?

На этом нюансы терминологии не кончаются. Радиаторы делятся на одноходовые и двухходовые. У одноходовых жидкость проходит через все трубки радиатора в одном направлении — от одного бачка к другому. А вот у двухходового один бачок разделен на две части перегородкой; жидкость, зайдя через верхнюю часть, перемещается по половине трубок в одну сторону, а затем, уже в другом бачке, меняет направление движения и возвращается во вторую часть первого бачка, двигаясь в обратном направлении.

Для кого это делают?

Авто-Радиатор — официальный поставщик конвейеров АВТОВАЗа и СП GM-АВТОВАЗ. Само собой, радиаторы Luzar поставляются на вторичный рынок, причем не только на российский — экспорт налажен в Белоруссию, Казахстан, Азербайджан, Украину, Армению… Сегодня питерцы производят свыше 1200 наименований продукции, в основном это радиаторы охлаждения двигателей и радиаторы отопления салона легковых автомобилей отечественного и импортного производства, а также некоторых грузовиков. Хотя и кондиционеры с интеркулерами не забыты.

Культура производства на заводе меня приятно удивила. Если радиатор моей машины потребует замены, не буду сбрасывать со счетов изделия Luzar.

Развитие конструкции сборных радиаторов

От наиболее простых, с двухрядным расположением трубок, снабженных для повышения эффективности пластмассовыми турбулизаторами, перешли к производству радиаторов с шахматным расположением трубок. Венцом развития сборных радиаторов стали конструкции с плоскоовальными трубками, улучша­ющими теплоотдачу.

Источник

Радиаторы

Радиаторы в РЭА – это устройства, применяемые для охлаждения точечных источников тепла путем рассеивания в окружающую газовую (воздух) или жидкостную среду.

Различают игольчатые и пластинчатые радиаторы:

Возможен принудительный обдув вентилятора.

Преимущества и недостатки типов радиаторов:

Пластинчатые радиаторы направлены по воздушному потоку. Перпендикулярно потоку радиатор будет работать неэффективно. Игольчатые радиаторы не нуждаются в ориентации потока, и, при равной массе, имеют немного большую площадь рассеивания, чем пластинчатые (разница не значительная).

Главное преимущество пластинчатого радиатора – технологичность изготовления. Например:

Можно очень плотно запрессовать пластины на тепловую трубку и достичь огромной площади рассеивания. Однако такие радиаторы чувствительны к загрязнению пылью.

  1. Тепловое сопротивление радиатора r градус/Ватт.
Читайте также:  Доп радиатор акпп шевроле круз отзывы

Тепловое сопротивление зависит от многих факторов (материала радиатора, ориентации радиатора, наличия вентилятора и т.д.), но основной фактор – площадь рассеивания радиатора

Эффективная площадь рассеивания – это пересчитанная эффективность радиатора к некоторой условной площади радиатора.

Для небольших рассеиваемых мощностей (до 10 Ватт) в нормальных условия (например, бытовая техника) используют приближенную формулу:

где r – C 0 /Вт, S – см 2

  1. Вес и габариты радиатора
  2. Создаваемый вентилятором радиатора шум.

Компоновка ТЭЗ (размещение элементов на печатной плате)

Процесс перехода от электрической схемы к конструктивному распределению (разбиению) всех элементов на группы, соответствующие конструктивам различных уровней, т. е. процесс преобразования функционального описания аппаратуры в конструктивное, называется компоновкой.

В зависимости от целей и условий компоновки можно выделить три постановки задачи:

  • типизация — разбиение схемы на конструктивные элементы (или топологические компоненты в ИМС) различных типов и определение минимальной номенклатуры их;
  • покрытие — преобразование исходной схемы в схему соединений элементов (модулей), номенклатура которых задана (возможно одновременное решение задачи введения поэлементного резервирования на заданную глубину);
  • разрезание — разбиение исходной схемы на части (микросборки, ТЭЗы, узлы и т. п.), типы которых либо заданы, либо должны быть определены в процессе решения), с минимизацией числа связей между ними.

Задача компоновки заключается в нахождении оптимального по одному или нескольким критериям размещения элементов и связей между ними в монтажном пространстве типовой конструкции с учетом заданных конструктивно-технологических ограничений.

Исходными данными являются: принципиальная схема, метрические параметры и топологические особенности печатной платы.

  • суммарная длина линий связей между элементами;
  • число используемых элементов во всех модулях скомпонованной схемы;
  • суммарная площадь, занимаемая элементами и соединениями;
  • электромагнитная совместимость элементов в модуле;
  • прочность печатной платы;
  • параметры теплообмена между элементами в узле.

В литературе можно найти множество разных подходов к решению задачи, но следует отметить:

  1. Комбинаторный перебор всех вариантов размещения элементов на печатной плате не реализуем, так как имеет факториальную сложность. Используются эвристические алгоритмы.
  1. При небольшом количестве элементов (до нескольких десятков) можно и лучше компоновать без средств автоматизации – получится быстрее и качественнее.
  2. При большом количестве элементов используют различные эвристические методы.

Рассмотрим один из них.

Последовательные алгоритмы компоновки

Модули делятся на группы:

  1. Элементы, установка которых возможна только в определенных местах на печатной плате (разъемы, индикаторы, ограничения на габариты и т.п.)
  2. По функционально-конструктивному признаку (подсистема памяти, ввода-вывода и т.п.)

Сначала размещают элементы с фиксированным положением. Затем ранжируют группы по зонам на печатной плате. Та группа, которая набирает наибольший вес устанавливается первой.

Внутри каждой группы рассчитывают свой ранг элементов по отношению к метам на печатной плате. Размещают первым элемент, набравший наибольший вес.

Источник

Игольчатые радиаторы Лигра

Игольчатые радиаторы ЛиграКомпания «ЛИГРА» (Литые Игольчатые Радиаторы) специализируется на производстве охладителей и радиаторов для охлаждения активных электронных компонентов и микросхем, применяемых в приборостроении, радиоэлектронике, радиотехнике и других областях.
Компания производит радиаторы для светодиодных светильников, радиаторные и силовые профили, игольчатые и ребристые радиаторы. Предлагаются готовые решения, а так же и доработка по индивидуальным требованиям на станках ЧПУ.

Для отвода тепла среди средств естественного охлаждения используются радиаторы различной формы и конструкции. Радиаторы прекрасно отводят тепло, в десятки раз продлевая функционирование электроники, светодиодной техники, микросхем, транзисторов, процессоров и др. Наиболее типичными являются ребристые и игольчатые радиаторы, которые изготавливаются методом литья под давлением в пресс-форму.
Ребристые радиаторы лучше работают с принудительным охлаждением. Поэтому они часто конструктивно соединяются с вентилятором, который охлаждает его набегающим воздушным потоком.
Благодаря своей уникальной конструкции и большой площади теплообмена игольчатые радиаторы обладают высокой эффективностью по теплоотдаче при естественном охлаждении. При равных габаритных размерах игольчатый радиатор на 70 – 100% эффективнее ребристого или пластинчатого радиатора.
Игольчатые радиаторы выполнены из алюминиевого сплава, симулина (АК7, АК12), обладающего хорошей теплопроводностью (1,68 Дж/см2 х сек х °С). Радиаторы покрыты чернением (анодированы), что позволяет увеличить теплоотдачу на 10 – 14%.

Источник