Что такое размер каркаса вентилятора



Как выбрать вентилятор для дома: помогаем определиться с критериями

С наступлением лета возрастает спрос на вентиляторы — относительно несложные бытовые приборы, хорошо знакомые даже людям, далеким от техники. Не будем утомлять читателей очевидными рассуждениями о том, что́ такое вентилятор и для чего он нужен. Отметим лишь, что основной конкурент вентилятора — кондиционер. Различия между этими приборами существенны: вентилятор лишь усиливает циркуляцию воздуха в помещении, тем самым создавая более комфортные условия, тогда как кондиционер непосредственно регулирует температуру.

Преимущества вентилятора очевидны: он обойдется в несколько раз дешевле кондиционера, не потребует услуг специалиста для монтажа, а также может работать при открытых окнах, одновременно с проветриванием помещения (тогда как кондиционер способен охладить воздух, но не обеспечит приток свежего воздуха, то есть кислорода). Помимо этого, вентилятор всегда можно переместить из одной комнаты в другую либо вовсе убрать (например, на зимний период).

Давайте взглянем на типы домашних вентиляторов и разберемся, какие они бывают и чем отличаются.

Тип рабочего механизма

Самый простой, доступный и распространенный тип рабочего механизма бытового вентилятора — осевой. Именно такой прибор мы представляем себе в первую очередь, когда речь заходит о вентиляторах.

Осевой вентилятор представляет собой колесо с лопастями, закрепленное на оси и установленное на подставке. Электрический мотор вращает колесо, лопасти которого обеспечивают направленный поток воздуха. Направление потока всасываемого и нагнетаемого воздуха у таких приборов горизонтальное. Куда «смотрит» вентилятор — туда и направлен поток воздуха. Лопасти у таких вентиляторов обычно пластиковые. Для защиты людей от соприкосновения с лопастями (и для защиты лопастей от повреждений в случае падения прибора) они закрыты кожухом из металлической сетки.

Классический напольный вентилятор Ballu BFF-805

Осевые вентиляторы нередко снабжены дополнительным поворотным механизмом, благодаря которому вентилятор может поворачиваться на несколько градусов влево/вправо, увеличивая тем самым рабочую зону.

Более современный тип вентиляторов — радиальный. Принцип работы такого вентилятора проще всего пояснить на примере классической «улитки», состоящей из цилиндра с изогнутыми лопастями и воздуховода, обеспечивающего отвод воздуха.

В таком вентиляторе воздух поступает внутрь цилиндра и выталкивается наружу — во всех направлениях. При наличии корпуса с выделенным воздуховодом воздух предсказуемо направится в нужную сторону (через предназначенный для него выход).

Радиальные вентиляторы обычно используется в приборах колонного типа, представляющих собой узкий вертикальный корпус с решеткой на лицевой части (то есть они относятся к напольным моделям, хотя изредка встречаются такие настенные и настольные вентиляторы).

Наконец, нужно упомянуть безлопастные вентиляторы, работающие по принципу турбины, нагнетающей воздух и пропускающей его через рамку в нужном направлении. Эти вентиляторы обеспечивают довольно сильный, ровный и непрерывный поток воздуха. Выглядят такие приборы стильно и футуристично, а отсутствие открытых лопастей, до которых могут добраться дети, делает эти приборы наиболее безопасными.

Безлопастной тепловентилятор Beem Air Joy Hot&Cool

Способ установки

Бытовые вентиляторы можно разделить по типу установки. Вариантов не так много: вентиляторы могут устанавливаться на пол или на стол, а также монтироваться на стену или на потолок.

Для жилых помещений чаще всего используют настольные, напольные и потолочные вентиляторы. Выбор того или иного способа, как правило, продиктован характеристиками помещения (не везде найдется место для напольного вентилятора), дизайнерским решением, а также вопросами безопасности (в квартире, в которой есть маленькие дети, вентилятор лучше разместить в недоступном для них месте).

Отметим, что потолочные вентиляторы нередко совмещены со светильником, что также позволяет сэкономить свободное место. Их обычно размещают над кроватью, обеденным столом или над зоной отдыха. Также их зачастую устанавливают в загородных домах — на террасах и в беседках.

Потолочный вентилятор faro Lombok

Настольные вентиляторы, как правило, приобретают в силу их компактности — для поддержания комфорта на рабочем месте.

Настольный вентилятор Maxwell MW-3548 GY

Напольные вентиляторы хороши благодаря своей мобильности (их можно без труда переместить с места на место). Они также отличаются достаточно большой мощностью и, обычно, довольно большим углом поворота, что делает их универсальным решением как для дома, так и для офиса. Радиальные вентиляторы почти всегда являются напольными.

Вентиляторы с настенным способом монтажа не пользуются большой популярностью. Причины понятны: такой вентилятор лишен мобильности и способен «обслуживать» лишь заранее определенный участок помещения.

Наконец, упомянем о портативных вентиляторах — приборах, работающих от аккумулятора. Их также можно встретить довольно редко. Гораздо чаще пользователи останавливают выбор на компактном USB-вентиляторе, который можно запитать от порта компьютера, зарядки для мобильных телефонов или переносного зарядного устройства (powerbank). Мощность таких приборов невелика, однако в случаях, когда требуется наиболее компактное решение, они вполне могут использоваться (например, на рабочем месте).

Мощность и производительность

Как несложно догадаться, эти два параметра непосредственно связаны друг с другом и определяют, насколько интенсивным окажется поток воздуха, а следовательно — насколько большое помещение сможет обслуживать выбранная модель. Однако отличающиеся конструктивно модели могут иметь разную производительность даже при одинаковой мощности. Указания относительно рекомендуемой площади помещения, как правило, содержатся в инструкции к прибору. Изучив ее, не составит большой проблемы понять, справится ли выбранная модель с поставленной задачей.

Уровень шума

Данный параметр напрямую связан с мощностью прибора. В общем случае более мощный вентилятор будет создавать больше шума (но это не точно). Поэтому не будет лишним опять же ознакомиться с инструкцией, в которой может быть указан максимальный возможный уровень шума для выбранного прибора. Особенно актуальным этот параметр становится, если вентилятор предполагается использовать в спальне или в детской комнате.

К сожалению, вентилятор может создавать дополнительные шумы, вызванные, например, нежелательными вибрациями. Предсказать их наличие практически невозможно, поэтому крайне желательно посмотреть и послушать устройство в работе еще в магазине. Правда, фоновый шум, присутствующий в зале торгового центра, не всегда позволяет адекватно оценить уровень шума отдельного прибора. Но это все равно лучше, чем ничего.

Также отметим, что в паспорте изделия может быть указан уровень шума, рассчитанный для минимальной мощности (минимальной скорости вращения лопастей). С помощью такой нехитрой уловки производитель может представить свой товар в более выгодном свете. Наконец, нередка ситуация, когда дешевая модель начинает шуметь не сразу, а через несколько месяцев эксплуатации. От таких ситуаций не застрахован никто, а полагаться тут можно только на репутацию бренда и отзывы пользователей, которые приобрели интересующую вас модель ранее.

Управление

Управление вентилятором может осуществляться с помощью механического (у более дешевых) или электронного (у более дорогих) блоков управления. Многие современные модели оснащены пультом дистанционного управления, а наиболее высокотехнологичные вентиляторы даже позволяют управлять ими со смартфона.

Панель управления может состоять из одной или нескольких кнопок, а также иметь подсветку, цифровой дисплей, таймер, индикатор температуры в помещении и т. д.

Система управления хорошего вентилятора позволяет не только выбрать подходящую мощность, но и настроить режим поворота, включение или отключение через заданный промежуток времени (или по расписанию), а также дополнительные режимы (например, у некоторых вентиляторов можно встретить смешанный режим, имитирующий случайные дуновения ветра).

Вентилятор Xiaomi Mijia с управлением по Wi-Fi

Конструктивные особенности

При выборе вентилятора не будет лишним проверить, насколько удачно сконструирован прибор. Хороший вентилятор должен быть устойчивым (особенно актуально это для квартир, в которых есть маленькие дети или домашние животные). Хорошо, если вентилятор допускает регулировку по высоте и скорости вращения. Большие и широкие лопасти обеспечат меньший уровень шума по сравнению с более компактными приборами с небольшим размером лопастей.

Пластиковые лопасти будут шуметь меньше, чем металлические (хотя некоторые предпочитают вентиляторы с металлическими лопастями из соображений надежности и престижа).

Защитная решетка лопастного вентилятора должна быть прочной (не гнуться при ударах) и иметь мелкую ячейку, сквозь которую ребенок не сможет просунуть пальцы.

Дополнительные функции

Многие производители добавляют в свои вентиляторы дополнительные функции, целесообразность наличия которых мы оставляем на усмотрение покупателя. Вентиляторы могут совмещать в себе функции прибора для ионизации или увлажнения воздуха, ароматизации помещения или обогревателя. Некоторые модели имеют подсветку, позволяющую использовать вентилятор в качестве ночника. На потолочных моделях часто устанавливается достаточно мощный светильник или даже люстра.

Выводы

Итак, давайте определим, на какие параметры нужно обратить внимание при выборе бытового вентилятора.

Источник

ГОСТ 10616-90 (СТ СЭВ 4483-84) Вентиляторы радиальные и осевые. Размеры и параметры

Г.С. Куликов, В.Б. Горелик, В.М. Литовка, А.Т. Пихота, А.М. Роженко, Н.И. Василенко, Т.Ю. Найденова, А.А. Пискунов, И.С. Бережная, Е.М. Жмулин, Л.А. Маслов, Т.С. Соломахова, Т.С. Фенько, А.Я. Шарипов, В.А. Спивак, М.С. Грановский, М.В. Фрадкин

Читайте также:  Вентилятор напольный мидеа mvfs4005

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 27.03.90 591

3. Срок первой проверки — 1995 г.

периодичность проверки — 5 лет

4. Стандарт полностью соответствует СТ СЭВ 4483-84.

5. ВЗАМЕН ГОСТ 10616-73

6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, приложения

2.11; 2.14; приложение

Настоящий стандарт распространяется на вентиляторы радиальные одно- и двусторонние и на осевые одно- и многоступенчатые, предназначенные для систем кондиционирования воздуха, вентиляции, а также других производственных целей, повышающие абсолютное полное давление потока не более чем в 1,2 раза и создающие полное давление до 12000 Па при плотности перемещаемой среды 1,2 кг/м .

Стандарт не распространяется на вентиляторы, встраиваемые в кондиционеры, а также в другое оборудование.

1. ОСНОВНЫЕ РАЗМЕРЫ

1.1. Размер вентилятора характеризуется его номером. За номер вентилятора принимается значение, соответствующее номинальному диаметру рабочего колеса , измеренному по внешним кромкам лопаток и выраженному в дециметрах. Например, вентилятор с =200 мм обозначается 2, =630 мм — 6,3 и т. д.

1.2. Номинальные диаметры рабочих колес, диаметры всасывающих отверстий радиальных (черт. 1а) и осевых (черт. 1б) вентиляторов, снабженных коллекторами, и диаметры нагнетательных отверстий осевых вентиляторов, снабженных диффузорами, следует выбирать из ряда значений, соответствующих ряду R20 ГОСТ 8032, указанных в табл. 1.

При необходимости допускается применение ряда R80.

1.3. Вентиляторы разных номеров и конструктивных исполнений, выполненные по одной аэродинамической схеме, относятся к одному типу.

2. АЭРОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ

2.1. За производительность (объемный расход) вентилятора , (м /с) принимается объемное количество газа, поступающего в вентилятор в единицу времени, отнесенное к условиям входа в вентилятор (см. приложение).

2.2. За полное давление вентилятора (Па) принимается разность абсолютных полных давлений потока при выходе из вентилятора и перед входом в него при определенной плотности газа.

2.3. За динамическое давление вентилятора (Па) принимается динамическое давление потока при выходе из вентилятора, рассчитанное по средней скорости в выходном сечении вентилятора.

2.4. За статическое давление вентилятора (Па) принимается разность его полного и динамического давления.

2.5. За мощность (кВт), потребляемую вентилятором, принимается мощность на валу вентилятора без учета потерь в подшипниках и элементах привода.

2.6. За полный КПД вентилятора принимается отношение полезной мощности вентилятора , равной произведению полного давления вентилятора на его производительность , к мощности , потребляемой вентилятором.

2.7. За статический КПД вентилятора принимается отношение полезной мощности вентилятора , равной произведению статического давления вентилятора на его производительность , к потребляемой мощности .

2.8. Быстроходность [(м/с) Па ] и габаритность [(м/с) Па ] вентилятора являются критериями для оценки пригодности работы вентилятора в режиме, заданном величинами , , и частотой вращения , и служат для сравнения вентиляторов различных типов.

2.9. Безразмерными параметрами вентилятора являются коэффициенты производительности , полного и статического давления, а также потребляемой мощности .

2.10. Аэродинамические качества вентилятора должны оцениваться по аэродинамическим характеристикам, выраженным в виде графиков (черт. 2) зависимости полного и статического и (или) динамического давлений, развиваемых вентилятором, потребляемой мощности полного и статического КПД от производительности при определенной плотности газа перед входом в вентилятор и постоянной частоте вращения его рабочего колеса. На графиках должны быть указаны размерности аэродинамических параметров.

Допускается построение аэродинамических характеристик при частоте вращения, изменяющейся в зависимости от производительности, с указанием этой зависимости ( ) на графике. Вместо кривых и на графике может указываться кривая динамического давления вентилятора.

Допускается при построении аэродинамической характеристики кривые ; и не указывать.

2.11. Аэродинамические характеристики вентилятора должны строиться по данным аэродинамических испытаний, проведенных в соответствии с ГОСТ 10921, с указанием одного из четырех типов присоединения вентилятора к сети (А, В, С, D), принятого по табл. 2.

Типовой следует считать характеристику, полученную при испытаниях по типу присоединения вентилятора к сети А.

Источник

Что такое размер каркаса вентилятора

Г.С. Куликов, В.Б. Горелик, В.М. Литовка, А.Т. Пихота, А.М. Роженко, Н.И. Василенко, Т.Ю. Найденова, А.А. Пискунов, И.С. Бережная, Е.М. Жмулин, Л.А. Маслов, Т.С. Соломахова, Т.С. Фенько, А.Я. Шарипов, В.А. Спивак, М.С. Грановский, М.В. Фрадкин

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 27.03.90 591

3. Срок первой проверки — 1995 г.

периодичность проверки — 5 лет

4. Стандарт полностью соответствует СТ СЭВ 4483-84.

5. ВЗАМЕН ГОСТ 10616-73

6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, приложения

2.11; 2.14; приложение

Настоящий стандарт распространяется на вентиляторы радиальные одно- и двусторонние и на осевые одно- и многоступенчатые, предназначенные для систем кондиционирования воздуха, вентиляции, а также других производственных целей, повышающие абсолютное полное давление потока не более чем в 1,2 раза и создающие полное давление до 12000 Па при плотности перемещаемой среды 1,2 кг/м .

Стандарт не распространяется на вентиляторы, встраиваемые в кондиционеры, а также в другое оборудование.

1. ОСНОВНЫЕ РАЗМЕРЫ

1.1. Размер вентилятора характеризуется его номером. За номер вентилятора принимается значение, соответствующее номинальному диаметру рабочего колеса , измеренному по внешним кромкам лопаток и выраженному в дециметрах. Например, вентилятор с =200 мм обозначается 2, =630 мм — 6,3 и т. д.

1.2. Номинальные диаметры рабочих колес, диаметры всасывающих отверстий радиальных (черт. 1а) и осевых (черт. 1б) вентиляторов, снабженных коллекторами, и диаметры нагнетательных отверстий осевых вентиляторов, снабженных диффузорами, следует выбирать из ряда значений, соответствующих ряду R20 ГОСТ 8032, указанных в табл. 1.

При необходимости допускается применение ряда R80.

1.3. Вентиляторы разных номеров и конструктивных исполнений, выполненные по одной аэродинамической схеме, относятся к одному типу.

2. АЭРОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ

2.1. За производительность (объемный расход) вентилятора , (м /с) принимается объемное количество газа, поступающего в вентилятор в единицу времени, отнесенное к условиям входа в вентилятор (см. приложение).

2.2. За полное давление вентилятора (Па) принимается разность абсолютных полных давлений потока при выходе из вентилятора и перед входом в него при определенной плотности газа.

2.3. За динамическое давление вентилятора (Па) принимается динамическое давление потока при выходе из вентилятора, рассчитанное по средней скорости в выходном сечении вентилятора.

2.4. За статическое давление вентилятора (Па) принимается разность его полного и динамического давления.

2.5. За мощность (кВт), потребляемую вентилятором, принимается мощность на валу вентилятора без учета потерь в подшипниках и элементах привода.

2.6. За полный КПД вентилятора принимается отношение полезной мощности вентилятора , равной произведению полного давления вентилятора на его производительность , к мощности , потребляемой вентилятором.

2.7. За статический КПД вентилятора принимается отношение полезной мощности вентилятора , равной произведению статического давления вентилятора на его производительность , к потребляемой мощности .

2.8. Быстроходность [(м/с) Па ] и габаритность [(м/с) Па ] вентилятора являются критериями для оценки пригодности работы вентилятора в режиме, заданном величинами , , и частотой вращения , и служат для сравнения вентиляторов различных типов.

2.9. Безразмерными параметрами вентилятора являются коэффициенты производительности , полного и статического давления, а также потребляемой мощности .

2.10. Аэродинамические качества вентилятора должны оцениваться по аэродинамическим характеристикам, выраженным в виде графиков (черт. 2) зависимости полного и статического и (или) динамического давлений, развиваемых вентилятором, потребляемой мощности полного и статического КПД от производительности при определенной плотности газа перед входом в вентилятор и постоянной частоте вращения его рабочего колеса. На графиках должны быть указаны размерности аэродинамических параметров.

Допускается построение аэродинамических характеристик при частоте вращения, изменяющейся в зависимости от производительности, с указанием этой зависимости ( ) на графике. Вместо кривых и на графике может указываться кривая динамического давления вентилятора.

Допускается при построении аэродинамической характеристики кривые ; и не указывать.

2.11. Аэродинамические характеристики вентилятора должны строиться по данным аэродинамических испытаний, проведенных в соответствии с ГОСТ 10921, с указанием одного из четырех типов присоединения вентилятора к сети (А, В, С, D), принятого по табл. 2.

Типовой следует считать характеристику, полученную при испытаниях по типу присоединения вентилятора к сети А.

Источник

Как выбрать вентилятор для корпуса

Сколь бы много внимания ни привлекали системы жидкостного охлаждения, какие бы рекорды ни ставили энтузиасты, применяющие минусовые температуры — большинство рядовых компьютеров и прочей бытовой электроники все равно будет использовать традиционные «воздушные» системы охлаждения.

И это вовсе не удивительно. Воздух бесплатен и доступен абсолютно везде и в любых количествах. А «воздушные» кулеры по сравнению с жидкостными и прочими системами охлаждения — гораздо проще конструктивно, намного меньше стоят и не требуют особых навыков для их установки и обслуживания.

Читайте также:  Преимущества вентилятора с датчиком влажности

Однако, чтобы воздух можно было использовать для охлаждения, его необходимо направить к радиатору, и обеспечить необходимую циркуляцию. А следовательно — в конструкции кулера необходим элемент, создающий, фокусирующий и направляющий воздушные потоки.

В типовых корпусах и системах охлаждения, не рассчитанных на работу в пассивном режиме, таковыми элементами выступают вентиляторы. И именно от них во многом зависят эффективность и прочие характеристики систем охлаждения.

В этом гайде будут рассмотрены основные вопросы, возникающие при выборе корпусных вентиляторов, и даны соответствующие рекомендации.

Форм-фактор и габаритные размеры

Да, именно этот пункт стоит первым в списке, несмотря на всю его очевидность.

Основная характеристика вентилятора, как стандартизированного устройства — это его размеры. Вентилятор, который вы планируете приобрести, должен соответствовать своему посадочному месту или креплению. Купите модель большего, чем нужно, размера, и корпус компьютера придется распиливать, удаляя мешающие вентилятору детали. Возьмете более мелкий вентилятор — он может не подойти под стандартное крепление кулера, а в корпусе может попросту не оказаться нужных монтажных отверстий.

Для компьютерных корпусов, процессорных кулеров и радиаторов СЖО чаще всего используются вентиляторы стандартных типоразмеров: 80×80, 92х92, 120х120 и 140х140 мм.

Вентиляторы меньших размеров — 25х25, 30х30, 40х40, 50х50, 60х60 мм — обыкновенно используются для охлаждения компактной техники — такой, как роутеры и NAS. Хотя их тоже можно использовать в обычных десктопах, например, для установки на радиаторы чипсета и VRM материнской платы.

Стоит также отметить, что понятие «типоразмер» описывает не только габариты корпуса вентилятора, но и расположение монтажных отверстий на нем. И это также важный момент.

Кулеры иногда используют вентиляторы, имеющие необычную форму. Например, вентилятор, формально являющийся 120-миллиметровым, использует крепление, соответствующее 92-мм модели. Или у 140-мм модели монтажные отверстия соответствуют 120-миилиметровой вертушке. Заменить вентилятор в таком случае можно либо на модель аналогичной формы, либо — на вентилятор меньшего типоразмера, что понизит эффективность кулера.

Отдельно стоит упомянуть и толщину вентилятора. И не только в контексте того, впишется ли вентилятор в ваш корпус.

Чем толще рамка вентилятора, тем толще и сама крыльчатка. Чем толще крыльчатка, тем больше площадь лопастей. Чем больше площадь лопастей, тем сильнее воздушный поток от вентилятора при прочих равных условиях.

Стандартный корпусной вентилятор имеет толщину около 25 мм с незначительными отклонениями. Это вполне компромиссный вариант: вентилятор не настолько толстый, чтобы мешать другим комплектующим, но достаточно эффективный.

Однако есть и другие варианты.

Низкопрофильные вентиляторы высотой около 15 миллиметров применяются преимущественно в кулерах для HTPC, где крайне важна экономия пространства. Их недостатком закономерно выступает меньшая эффективность: маленькие лопасти создают меньший воздушный поток, и, что важнее, — меньшее статическое давление. Так что эффективность кулера может сильно понизиться, а «закачать» объем воздуха в корпус вентилятор и вовсе не сможет.

Вентиляторы с большей толщиной (30–40 мм.), как правило, обладают и более мощной крыльчаткой. Они, напротив, гораздо эффективнее, но и гораздо шумнее стандартных вертушек, если сравнивать их на одинаковых оборотах. Кроме того, не всегда их можно установить, не уперевшись (буквально!) в другие комплектующие.

Впрочем, иногда толщина рамки бывает увеличена из-за наличия у вентилятора подсветки или других элементов дизайна. В таком случае проблема габаритов остается, а вот никаких реальных преимуществ вы не получаете.

Тип разъема питания

Вентилятор, как нетрудно догадаться, питается электричеством. Следовательно, чтобы он начал работать, его надо к чему-то подключить. И желательно, чтобы это самое «чему-то» было штатным разъемом внутри корпуса компьютера.

Вариантов, на самом деле, не так уж много:

Разъем питания 2-pin, что вполне логично, имеет только два контакта: плюс и минус. Датчик скорости вращения отсутствует, регулировка оборотов через PWM — тоже. Впрочем, этот разъем в современных ПК практически не используется, найти его там можно разве что в блоках питания, и то лишь тех, где провода от вентилятора не впаяны в плату. Впрочем, и там разъем 2-pin постепенно становится редкостью.

Разъем 3-pin распространен гораздо больше, и до сих пор не сдает свои позиции. От предыдущего варианта отличается наличием третьего контакта, отвечающего за мониторинг оборотов. Регулировка скорости происходит за счет изменения напряжения, PWM отсутствует. Хотя, благодаря унификации, подключить такой вентилятор можно и к разъему 4-pin.

Сам же разъем 4-pin отличается еще одним контактом — собственно, PWM (или ШИМ). Конечно, таким вентилятором можно управлять и по старинке, понижая или повышая напряжение, однако PWM обеспечивает более широкие пределы и более плавную регулировку.

Стоит отметить, что вентиляторы могут иметь сразу два разъема: 4-pin Male и 4-pin Female. Фактически это встроенный разветвитель, благодаря которому к одному разъему на материнской плате можно подключить два вентилятора. Разумеется, обороты будут отслеживаться только по одному вентилятору, а вот скорость вращения будет регулироваться у обоих. И это, кстати, весьма полезная функция, если у вас бюджетная материнская плата с малым количеством разъемов под корпусные вентиляторы.

Разъем Molex предполагает подключение вентилятора напрямую к блоку питания и работу на фиксированных оборотах. В современных ПК это может казаться анахронизмом, но в отдельных случаях возможность подключения вентилятора напрямую к БП может оказаться полезной.

Разъемы 5-pin или 6-pin — это, чаще всего, проприетарное решение ряда производителей, рассчитанное на подключение вентиляторов к фирменной панели управления, либо к фирменному интерфейсу, позволяющему управлять подсветкой и скоростью вращения вентиляторов через фирменную же утилиту. Если у вас есть соответствующее устройство, можно приобретать и вентилятор. Если же нет — использовать его вы сможете, но сильно потеряете в функционале.

Впрочем, из этого правила есть и исключения. К примеру, разъем 6-pin у вентиляторов Aerocool серии Eclipse может подключаться к комплектному переходнику на совершенно стандартные 4-pin разъем питания и 3-контактный разъем подсветки (а точнее — 5V-RGB + VDG). Таким образом, вентилятор хоть и оснащен нестандартным разъемом питания, но подключить его можно и без дополнительных устройств.

Разъем USB 2.0 (9-pin) — это также фирменное решение, встречающееся у некоторых моделей вентиляторов Thermaltake Riing и Pure. В этом случае контакты, отвечающие за питание, мониторинг оборотов и подсветку объединены в одну колодку для подключения к фирменному контроллеру. Подключать такой разъем можно и к стандартной 4-конактной колодке на материнской плате — но в этом случае 5 из 9 контактов останутся не задействованы, и подсветка работать не будет.

И да: хотя в названии и фигурирует аббревиатура USB, посредством этого интерфейса к материнской плате подключается именно контроллер, а не сами вентиляторы.

Тип разъема подсветки

Если вентилятор оснащен RGB или aRGB-подсветкой, но при этом не использует проприетарный разъем — значит, его подсветка подключается к стандартному разъему на материнской плате. И тут есть свои варианты.

3pin (5V-D-G) — собственно, разъем для адресной подсветки, использующей 5-вольтовые светодиоды для индивидуального управления каждым, и, как результат, выстраивания более сложных цветовых схем.

4pin (12V-R-G-B) — разъем для «обычной» RGB-подсветки, поддерживающей одновременно только один цвет.

Как нетрудно догадаться, ключевое отличие между разъемами — напряжение: 5 вольт и 12 вольт соответственно. Именно поэтому два типа разъемов подсветки несовместимы: вентилятор, рассчитанный на 5 вольт, при подключении к 12 вольтам выйдет из строя. И хорошо, если только в части подсветки.

В эту картину мира категорически не вписывается разъем 4pin (5V-R-G-B), присутствующий, например, у некоторых вентиляторов Gelid, ID-Cooling и Deepcool. Однако его существование объясняется очень просто: этот разъем также рассчитан на подключение ко внешнему контроллеру.

В каталоге ДНС представлены вентиляторы и с 9-контактным разъемом подсветки, но в данном случае под ним понимается не какой-то отдельный стандарт, а все тот же 9-контактный фирменный разъем Thermaltake, о котором сказано выше.

Регулировка оборотов

Если брать в расчет только разъем питания вентилятора, то можно предположить, что регулировка скорости вращения возможна тремя способами: изменением напряжения, использованием ШИМ или же через фирменный блок управления и утилиту от производителя.

На деле каждый из этих способов может быть реализован несколькими путями.

Так, регулировку по напряжению можно возложить на BIOS материнской платы, в котором задается датчик температуры, в зависимости от которого будут меняться обороты, а также сам график изменения оборотов.

Читайте также:  Диагностика наружного и внутреннего блоков

Но можно также использовать переходник с резистором, понижающим приходящее на вентилятор напряжение. Ступень регулировки получается только одна, но зато настраивать ничего не надо — только подключить переходник.

Более функциональный вариант — использование подстроечного резистора, который позволяет настраивать сопротивление в относительно широких пределах. В таком случае скорость работы вентилятора можно менять при включенной системе, и в гораздо более широких пределах. Причем подстроечный резистор может быть один, а может объединяться в реобас — блок из нескольких резисторов, управляющих несколькими вентиляторами.

Еще более продвинутая разновидность — использование внешнего термодатчика, который можно закрепить на радиаторе или (в некоторых случаях) на самом охлаждаемом элементе. Разумеется, использовать такой вентилятор на кулере ЦПУ особого смысла нет — там температура прекрасно измеряется своими датчиками. А вот если вы заменили кулер видеокарты на альтернативный, а материнская плата о температуре ГПУ не знает, или же приделали радиатор VRM к плате, на которой его изначально не было — такой вентилятор сильно упростит дальнейшую эксплуатацию системы.

Регулировка посредством PWM требует подключения вентилятора к разъему 4-pin, в остальном же никакой разницы с точки зрения пользователя с 3-pin не будет. Кривая роста оборотов в зависимости от температур, как правило, уже заложена в BIOS платы, и единственное, чем она может отличаться от аналогичной кривой регулировки по напряжению — меньшее значение минимальных оборотов. Но, разумеется, ее также можно модифицировать самостоятельно — как и переназначать датчик, в зависимости от которого вентилятор будет изменять скорость.

Софтовая регулировка доступна фирменным вентиляторам и наборам вентиляторов, либо штатным вертушкам готовых СЖО. Как правило, для ее реализации необходимы не только сами вертушки, но и контроллер, подключающийся к ПК через шину USB и, собственно, управляющий подсветкой и оборотами вертушек. Причем первая часть функционала в данном случае выступает основной, поскольку регулировать обороты можно и обозначенными выше способами.

Максимальная и минимальная скорость вращения

Чем выше скорость вращения вентилятора — тем выше его эффективность, но и шума от него больше. Чем ниже скорость — тем тише работает вентилятор, но и воздушный поток слабее, а температуры комплектующих в вашем компьютере — выше.

Соответственно, выбор вентилятора — это поиск компромисса между акустическим комфортом и эффективностью охлаждения.

Однако не стоит думать, что если в характеристиках вашего вентилятора написано, к примеру «500–2000 об/мин», то работать он будет только в двух указанных режимах. Это — только верхняя и нижняя граница оборотов, реальное же количество ступеней регулировки будет зависеть от выбранного вами способа из предыдущего абзаца.

Также следует помнить, что вентиляторы разного типоразмера нельзя сравнивать исключительно по рабочим оборотам. Сила создаваемого вентилятором воздушного потока — а, следовательно, и уровень шума! — зависят не только от скорости, но и от характеристик крыльчатки.

Например, на 2000 оборотов в минуту условный 120-мм вентилятор способен создать поток силой в 80 кубических футов в минуту. Когда такое количество воздуха будет рассеиваться в теле радиатора — уровень шума будет безгранично далек от комфортного.

Но условный 92-мм вентилятор с низкопрофильной 15-мм вертушкой на тех же 2000 об/мин будет прогонять через себя порядка 25 кубических футов в минуту — и разницу в уровне шума на примере этих цифр вы уже сами можете представить.

При выборе вентиляторов можно ориентироваться на следующие условные диапазоны:

  • 140 мм — 500–1200/1300 об/мин.
  • 120 мм — 700–1600 об/мин.
  • 92 мм — 900–2000 об/мин.
  • 80 мм — 1000–2500 об/мин.

Эти значения, разумеется, совершенно условные. Они не учитывают индивидуальных характеристик вертушек, и лишь описывают пределы, при которых вентиляторы будут работать тихо в режиме простоя, и обеспечат эффективное охлаждение при высоких нагрузках.

Тип подшипника

Вентилятор, помимо всего прочего — это один из немногих элементов компьютера, выполняющих чисто механическую работу. А следовательно, огромное значение при выборе вертушки имеют тип и характеристики ее основного узла — подшипника, обеспечивающего вращение.

В компьютерных вентиляторах наиболее распространены следующие типы подшипников:

Подшипник скольжения или втулка — это простейший и самый дешевый вариант, в котором происходит трение двух поверхностей в среде смазки. Такая конструкция является самой дешевой, поэтому и вентиляторы на подшипнике скольжения, как правило, стоят недорого.

Парадоксально, но втулка — это еще и один из самых тихих подшипников, механические призвуки в работе такого вентилятора фактически отсутствуют.

Обратная сторона медали — крайне ограниченный срок службы. Втулка, из какого бы материала она ни была сделана, со временем разрушается от трения, и вентилятор начинает издавать посторонние шумы, вибрировать при работе, а со временем и вовсе выходит из строя. Зачастую срок службы подшипников скольжения составляет год-полтора, а менее качественные модели могут проработать и меньше.

Кроме того, ввиду особенностей своей конструкции, втулка крайне плохо переносит высокие температуры, а также не может использоваться в горизонтальном положении — смазка в таком случае быстро вытекает, и износ подшипника резко ускоряется.

Подшипник качения или шарикоподшипник использует иной принцип работы: подшипник представляет собой два кольца, между которыми находятся металлические шарики, обеспечивающие вращение.

Этот тип подшипника — фактически полная противоположность втулки. Шарики крайне долговечны и могут работать едва ли не десятилетиями. Им абсолютно все равно, в каком положении и при каких температурах предстоит вращаться… но обратной стороной является повышенный уровень механического шума.

Избавиться от шума позволяют керамические подшипники качения — они еще более долговечны и еще более индифферентны к температурам, однако стоят такие подшипники дороже всех прочих типов (даже дороже качественного гидродинамика!), а встречаются крайне редко.

Гидродинамический подшипник — по сути дальнейшее развитие идей втулки. Камера такого подшипника герметична, а трение происходит в слое смазки, постоянном и исключающем прямой контакт трущихся деталей.

Качественный гидродинамик может даже превосходить шарикоподшипник по сроку службы, и однозначно выигрывать у него по уровню шума, поскольку здесь он не отличается от втулки. Минус же здесь очевиден: высокая цена гидродинамического подшипника, сохраняющаяся и по сей день. Дешевые же вентиляторы, заявляющие о наличии гидродинамика — как правило, основаны на все той же втулке.

Разновидность гидродинамического подшипника — подшипник масляного давления (SSO). Отличается увеличенной толщиной гидродинамического слоя, а для исключения возможности смещения вал центрируется магнитом в основании вентилятора. Стоят такие подшипники чуть дешевле керамических подшипников качения, а встречаются столь же редко, и разумеется — преимущественно в вентиляторах топовых брендов.

В подшипниках с магнитным центрированием ось вентилятора «подвешивается» в магнитном поле, вследствие чего исключается механический контакт трущихся поверхностей. Подшипник закономерно оказывается самым долговечным, самым тихим и самым дорогостоящим вариантом, а распространенность его даже ниже, чем у керамических и SSO.

Критерии и варианты выбора

Если вам нужен обдув чипсета, зоны VRM материнской платы, или вы устанавливаете вентилятор в корпус греющегося Wi-Fi-роутера, обратите внимание на компактные варианты в размерах от 20 до 50 мм.

Такие вентиляторы легко установить в нужные вам места, а весь создаваемый ими воздушный поток будет сфокусирован на охлаждаемом элементе. Единственный здесь совет — обратите внимание на модели с более «долгоиграющими» подшипниками, а то придется повторять работу через год.

Если вам нужны вентиляторы в низкопрофильный корпус для HTPC или офисный корпус — обратите внимание на стандартные модели в типоразмерах 80х80 и 92х92 мм, причем здесь также желательно выбирать подшипники с долгим сроком службы.

В случае HTPC или кастомных корпусов могут пригодиться и низкопрофильные вентиляторы — согласитесь, мало радости от эффективного охлаждения процессора или видеокарты, если из-за «толстого» вентилятора корпус попросту не закрывается.

Для домашнего компьютера в стандартном корпусе формата АТХ подойдут любые вентиляторы стандартных типоразмеров: 92х92, 120х120, 140х140 мм. В зависимости от ваших целей можно будет обратить внимание на тихие модели, наиболее бюджетные варианты или наиболее долговечные.

В случае же, если компьютер собирается в определенной цветовой гамме, стоит предусмотреть либо соответствующее сочетание цветов рамки и крыльчатки вентилятора, либо наличие подсветки: обычной настраиваемой, либо адресной, позволяющей реализовать большее количество эффектов.

Если же световые эффекты — более важная характеристика даже по сравнению с основной задачей вентилятора — есть смысл рассмотреть фирменные комплекты вертушек, предлагающие собственные контроллеры и ПО для управления подсветкой.

Источник